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Key Points

•We applied MR in
a PheWAS to investi-
gate potential MM risk
factors.

The etiology of multiple myeloma (MM) is poorly understood. Summary data from genome-

wide association studies (GWASs) of multiple phenotypes can be exploited in a Mendelian

randomization (MR) phenome-wide association study (PheWAS) to search for factors

influencing MM risk. We performed an MR-PheWAS analyzing 249 phenotypes, proxied by

10 225 genetic variants, and summary genetic data from a GWAS of 7717 MM cases and

29304 controls. Odds ratios (ORs) per 1 standard deviation increase in each phenotype were

estimated under an inverse variance weighted random effects model. A Bonferroni-

corrected threshold of P 5 2 3 1024 was considered significant, whereas P , .05 was

considered suggestive of an association. Although no significant associations with MM risk

were observed among the 249 phenotypes, 28 phenotypes showed evidence suggestive of

association, including increased levels of serum vitamin B6 and blood carnitine (P 5 1.1 3

1023) with greater MM risk and v-3 fatty acids (P 5 5.4 3 1024) with reduced MM risk. A

suggestive association between increased telomere length and reduced MM risk was also

noted; however, this association was primarily driven by the previously identified risk

variant rs10936599 at 3q26 (TERC). Although not statistically significant, increased body

mass index was associated with increased risk (OR, 1.10; 95% confidence interval, 0.99-1.22),

supporting findings from a previous meta-analysis of prospective observational studies. Our

study did not provide evidence supporting any modifiable factors examined as having

a major influence on MM risk; however, it provides insight into factors for which the

evidence has previously been mixed.

Introduction

Multiple myeloma (MM) is a tumor of plasma cells primarily within the bone marrow, which accounts for
20% of deaths in adults diagnosed with a hematological malignancy.1 Although survival for MM has
improved markedly over the last decade with the introduction of new therapeutic agents, all patients
eventually relapse.2

The global burden of MM has substantially increased in the last 30 years, but its incidence is highly
variable among different countries. Although MM is more common in high sociodemographic index
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countries, the temporal increase in disease incidence has been
higher in middle and low-middle sociodemographic index coun-
tries.3 These data suggest, although indirectly, that lifestyle factors
influence the risk of developing MM.

Identifying etiological risk factors for MM has the potential to
inform prevention and intervention strategies to reduce disease
burden. Numerous factors have been reported to affect the risk of
either MM or its precursor, monoclonal gammopathy of unknown
significance, including obesity,4-8 diet,9-11 vitamin D,12,13 immune
dysfunction,14 and radiation exposure.15,16 Aside from obesity,
studies have either been inconsistent, null, or not independently
validated.

These observational epidemiological studies are, however, prone to
reverse causation, unmeasured confounding, and recall bias, which
can preclude causal inferences.17 Furthermore, the studies conducted
to date have had a limited scope of inquiry, examining factors
with established associations for other cancers or for which
information can be readily collected.

Mendelian randomization (MR) is an analytical method that exploits
genetic variants as instrumental variables (IVs) to infer the causal
relevance of an exposure to an outcome, such as a disease.18

Because the genetic variants are randomly assigned at conception,
they are not influenced by reverse causation, and in the absence of
pleiotropy (ie, genetic variants being associated with a disease
through alternative pathways), they can provide unconfounded
estimates of disease risk (Figure 1).18 So far, the application of MR
to study MM etiology has been confined to examining the
relationship between obesity19 or immunoglobulin20 level and MM
risk. An agnostic strategy to identify causal relationships has,
however, recently been proposed, by integrating phenome-wide
association study (PheWAS) and MR methodology, termed MR-
PheWAS.21

To gain insight into the etiological basis of MM, we conducted an
MR-PheWAS to test purported associations and search for novel
causal relationships. Specifically, we analyzed 249 phenotypes,
proxied by 10225 genetic variants, and summary genetic data from
a genome-wide association study (GWAS) of MM comprising 7717
cases and 29304 controls.22

Methods

Ethics approval and consent to participate

This MR analysis was undertaken using previously reported GWAS
data. Therefore, ethical approval was not required, because these
data came from the summary statistics of the published
GWAS.22-26

Genetic instruments for phenotypes

Two-sample MR was conducted using the TwoSampleMR R
package.27 Individual SNPs identified from recent meta-analyses
or large studies published to date or curated by MR-Base27 were
considered genetic instruments (supplemental Table 1).27 For each
SNP, the chromosome position, the effect estimate expressed in
standard deviations (SDs) of the trait per allele, and the
corresponding standard errors (SEs) were recovered. SNPs were
only considered potential instruments if they were associated with
each trait at P , 5 3 1028 in a GWAS of European populations
and had a minor allele frequency .0.01. To avoid colinearity
between SNPs for each trait, correlated SNPs within each trait
were excluded (linkage disequilibrium threshold, r2 $ 0.01). Only
SNPs with the strongest effect on the trait were considered
(supplemental Table 2). The proportion of variance explained by the
associated SNPs were computed from the association statistics.
Traits were only considered if the power to identify ORSD of 0.67 or
1.50 was $80% (supplemental Table 1). We considered only
continuous traits, because analysis of binary traits (eg, disease
status) with binary outcomes in 2-sample MR frameworks can result
in inaccurate causal estimates.28

Myeloma data

The association of each genetic instrument with MM risk was
examined using a summary statistic from a recent meta-analysis of
6 MM GWASs (supplemental Table 3).22 After imputation, this
meta-analysis related.3 million genetic variants to 7717 MM cases
and 29304 controls of European descent (supplemental Table 4).
Because some potentially modifiable reproductive risk factors are
female specific, where sex data were available, we further
computed MM association statistics using 2190 female cases
and 9060 female controls. Plasma progesterone association
statistics were calculated for both combined sex and female only.

Estimation of study power

The power of MR to demonstrate a causal effect depends on the
percentage of risk factor variance explained by the genetic variants
used as instruments.29 We estimated the study power, stipulating
an a of 0.05, for each risk factor a priori across a range of effect
sizes (supplemental Table 1).29

MR analysis

The MR methodology assumes that genetic variants, used as
instruments for a risk factor, are associated with the risk factor and
not with confounders or alternative causal relationships (Figure 1).18

Additionally, associations must be linear and unaffected by inter-
actions.30 For each SNP, causal effects were estimated for MM as an
odds ratio (OR) per 1 SD unit increase in the putative risk factor
(ORSD), with 95% confidence intervals (CIs), using the Wald ratio.
For traits with multiple SNPs as IVs, causal effects were estimated
under inverse variance weighted random effects (IVW-RE) and

Confounder

Multiple
Myeloma

Modifiable
risk factor

SNPn

SNP2

SNP1

C

A

B

Figure 1. Principles of MR and the assumptions that need to be satisfied to

derive unbiased causal effect estimates. Dashed lines represent direct causal

and potential pleiotropic effects that would violate MR assumptions. A indicates

genetic variants used as IVs are only associated with the modifiable risk factor; B

indicates genetic variants only influence the risk of developing MM through the

modifiable risk factor; C indicates genetic variants are not associated with any

measured or unmeasured confounders. SNP, single-nucleotide polymorphism.
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IVW fixed effects models (supplemental Table 5). To assess the
robustness of our findings, we also obtained weighted median
estimates (WMEs)31 and mode-based estimates (MBEs)32 for
results that were suggestively significant and had .2 SNPs
included in the analysis (supplemental Table 6). Pleiotropy exists
when a single genetic variant influences multiple phenotypes.33

Horizontal pleiotropy refers to a situation where the genetic
instrument influences disease outcome via a different pathway
that is not under investigation. Where pleiotropic effects are
balanced and there exists no systematic bias across a set of
genetic instruments, MR estimates remain valid. If horizontal
pleiotropy is unbalanced (directional), it may result in a biased MR
estimate.34 Directional pleiotropy was therefore assessed using
MR-Egger regression (supplemental Table 7).35 A consistent
effect across these 4 complementary methods (IVW, MBE, WME,
and MR-Egger), which make different assumptions about horizon-
tal pleiotropy, is less likely to be a false positive.36 We examined
the potential impact of outlying and pleiotropic SNPs on causal
estimates adopting a leave-one-out strategy, under the IVW-RE
model (supplemental Table 8).27 This method performs the MR
analysis but leaves out each SNP in turn to identify whether
a single SNP is driving the association.27 Heterogeneity observed
within each trait (I2) was calculated from Cochran’s Q value.

To account for multiple testing, we considered a Bonferroni-
corrected P value of 23 1024 (ie, 0.05/249 putative risk factors) as
being statistically significant. A P . 2 3 1024 but ,.05 was
considered to be suggestive evidence of a causal association.
Statistical analyses were performed using R (version 3.4.0) and MR-
Base.27

Availability of data and material

Genetic instruments can be obtained through MR-Base27 or from
published work (supplemental Table 1). Details and availability
of MM SNP genotyping data that support the findings of this study
have been previously published.22-26

Results

The median proportion of variance explained by SNPs used as IVs
for each of the 249 phenotypes examined as potential risk factors
for MM was 5.45% (95% CI, 0.61%-60.43%). The power of our
study to demonstrate a causal association for MM is tabulated for
each exposure in supplemental Table 1.37

The strength of the association between each of the 249
phenotypes studied and risk of MM under IVW-RE models is
shown in Figure 2, with corresponding tabulated data in supple-
mental Table 5. None of the traits showed a statistically significant
association with risk of MM, whereas 28 phenotypes showed
suggestive evidence of association (P , .05) with risk of MM
(Figure 3).

FAs and metabolism

Genetically predicted increased levels of a-linolenic acid and
decreased levels of docosapentaenoic acid, both v-3 fatty acids
(FAs), showed a suggestive association with MM risk (Wald ratio:
ORSD, 1.20; 95% CI, 1.04-1.38; P 5 .011 and IVW-RE: ORSD,
0.90; 95% CI. 0.81-0.99; P 5 .037, respectively). Overall,
genetically predicted higher levels of v-3 FAs were associated
with a decreased risk of MM (IVW-RE: ORSD, 0.74; 95% CI, 0.62-
0.88; P 5 5.4 3 1024), with causal effect estimates similar under

WME and MBE approaches. In the v-6 FA class, decreased levels
of adrenic acid, arachidonic acid, and g-linolenic acid and increased
levels of dihomo-g-linoleic acid and linoleic acid were associated
with increased risk of MM (supplemental Table 5). Although FAs
within the class were individually significant, overall, the v-6 FAs as
a class were not suggestively associated with increased risk of MM.
Similarly, although higher levels of oleic acid were suggestively
associated with increased MM risk, overall, v-7 and v-9 FA classes
were not significant. FA metabolism involves sequential enzymatic
conversions, and genes involved in FA processing form parts of
numerous FA pathways. As a result, SNPs influencing the
metabolism of 1 FA are often associated with circulating concen-
trations of multiple FAs.38 Leave-one-out analysis showed
rs174547 to be a major driver of association across multiple FAs,
although v-3 FAs as a class remained significant after excluding this
SNP from the analysis (P 5 .020; supplemental Table 8). When
applying WME and MBE approaches, causal effect estimates for
v-3 FAs remained significant.

Increased levels of genetically predicted blood carnitine showed
a suggestive association with increased risk of MM (ORSD, 1.13;
95% CI, 1.05-1.22; P 5 1.1 3 1023). MR-Egger analysis did not
show evidence of bias in causal estimates (Pintercept . .05), and
leave-one-out analysis demonstrated no single SNP as driving the
association (supplemental Table 8). Although altered levels of
a number of acyl carnitine esters were also suggestively significant
for MM risk, including cis-4-decenoyl carnitine, decanoylcarnitine,
hexanoylcarnitine, hydroxyisovaleroyl carnitine, isovalerylcarnitine,
octanoylcarnitine, propionylcarnitine, and stearoylcarnitine, these
acyl carnitines follow similar biosynthetic pathways, and their levels
may be influenced by the same underlying SNPs.39

Telomere length

Although genetically increased telomere length was associated
with MM risk (IVW-RE: ORSD, 2.33; 95% CI, 1.20-4.52; P 5 .013),
there was marked heterogeneity among the 7 SNPs used as IVs
(I2 5 86%). The association was primarily driven by the 3q26 TERC
SNP (rs10936599), and after exclusion of this SNP, the association
was nonsignificant (P5 .161; supplemental Table 8; Figure 4). This
SNP was previously shown to be associated with MM.25

Diet, lifestyle, and other factors

Among the dietary factors considered, an increased level of serum
vitamin B6 was suggestively associated with increased risk of MM
(ORSD, 1.26; 95% CI, 1.01-1.58; P 5 .041), whereas vitamin D,
which has been suggested as a risk factor for MM,13 was not
associated with MM risk in our study (P 5 .54).

In keeping with previous findings from a meta-analysis of pro-
spective studies that demonstrated an association between obesity
and increased risk of MM (relative risk, 1.21; 95% CI, 1.08-1.35),8

increased body mass index was associated with increased MM risk,
although nonsignificantly (OR, 1.10; 95% CI, 0.99-1.22; P5 .082).
All other obesity-related traits, including whole-body water mass,
basal metabolic rate, weight, impedance of whole body, whole-body
fat mass, body fat percentage, trunk fat percentage, waist
circumference, birth weight, hip circumference, waist/hip ratio,
and birth weight of first child, demonstrated nonsignificant
associations (supplemental Table 5). Furthermore, our analysis
showed nonsignificant relationships between interleukin-6 (IL-6)
polymorphisms, IL-6 receptors, and MM risk (supplemental Table 5).
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Discussion

Despite its comparative rarity, there is an unmet need in the
understanding of MM etiology and risk factors, given the significant
morbidity and mortality associated with the disease. Incidence
of MM limits the power of a conventional cohort study to
demonstrate a causal association. As a consequence, little is
known about the etiological basis of MM, which is a barrier to
developing strategies to reduce disease burden.40 This contrasts
markedly to the success of cohort and case-control studies of
common cancers, such as breast,41 lung,42 and colorectal
cancers,43-45 which have identified major determinants of risk.

MR can circumvent many limitations of a conventional observational
study, and the methodology is therefore increasingly being used to
examine the impact of interventions on disease risk. The value of MR
has been greatly enhanced by the wealth of GWAS data now
available on multiple traits, which provide SNPs that can be used as
IVs. These data have allowed us to test the relationship between
multiple traits and MM risk in a hypothesis-free manner by
performing an MR-PheWAS.

After correction for multiple testing, our MR-PheWAS did not
provide significant evidence for associations between MM and any
of the 249 genetically predicted phenotypes examined, which
comprised traits relating to diet, lifestyle, metabolic factors, and

anthropometrics. Application of a Bonferroni correction may have
been overly stringent, because the exposures studied are likely not
independent. Although identified associations are suggestive and
require validation, we did find support for a nominal association
between 28 exposures and risk of MM at P , .05.

Notably, among the 249 exposures analyzed using IVW-RE,
a majority of the suggestively significant results were related to
FA transport and FA oxidation (FAO) pathways, including carnitine,
acyl carnitines, and v-3 FAs. Briefly, FAs are transported into the
mitochondria, where they are oxidized with concomitant production
of nicotinamide adenine dinucleotide, nicotinamide adenine di-
nucleotide phosphate, flavin adenine dinucleotide, and ATP for
energy to sustain cellular metabolism. During this process, carnitine,
fatty acids and acyl-CoA are used.46 The metabolic requirement of
plasma cells to perform antibody production and how this alters
when the cells become malignant, as in MM, are relatively unknown,
although studies have shown that B cells are metabolically flexible
to support the production and secretion of antibodies.47 This
metabolic reprogramming may be mediated by cells in the bone
marrow microenvironment, such as bone marrow adipocytes, which
store triglycerides and convert them to FAs. The constituents of the
microenvironment may shift myeloma cells from aerobic glycolysis
to use readily available FAs and produce more energy by FAO. As
such, targeting FAO in MM is an area of interest for therapeutic
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Figure 2. Volcano plot of the ORSD from IVW-RE or

Wald ratio MR analysis of 249 phenotypes with risk

of MM. Dashed gray line corresponds to P 5 .05. ln,

natural logarithm; PVE, proportion of variance explained.
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investigation.46 Such metabolic reprogramming, itself a hallmark of
cancer,48 is still not fully understood; however, this analysis provides
support for aberrant FA and blood carnitine levels influencing MM
risk using genetic markers as IVs.

Longer telomere length has been associated with risk of MM49 and
other cancers,50 including glioma.51 In our analysis, we found that
longer telomere length was nominally associated with increased risk
of MM. This was predominantly driven by an SNP in the TERC gene,
with other variants showing only limited support for an association
(Figure 4; supplemental Table 8).

Additionally, in our analysis, we did not find an association between
traits that have previously been considered as potential risk factors
for MM, including vitamin D13 and IL-6 polymorphisms.52,53 We did,
however, provide some supporting evidence for the reported
association between obesity and risk of MM.6-8,40 Intriguingly,
observational studies have demonstrated an increased risk of
transformation from monoclonal gammopathy of unknown
significance to MM in overweight and obese individuals,54,55

suggesting obesity-related pathways may be determinants of
tumor progression rather than affecting the early phase of
neoplasic development.

3–phenylpropionate (hydrocinnamate) 1 
Adrenic acid (22:4n6) 1
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Arachidonic acid (20:4n6) 2
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Figure 3. Forest plot of 28 phenotypes suggestively associated with risk of MM. 95% CIs indicated by horizontal lines. Vertical line denotes the null value (ORSD, 1).
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width. Vertical line denotes the null value (ORSD, 1).
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Our current analysis has been able to leverage a greater number of
SNPs as IVs, thereby increasing study power; for 202 of the
exposures, we had at least 80% power to demonstrate an ORSD of
1.33, stipulating a P value of .05. However, we cannot exclude the
possibility that the null results we observed were simply a conse-
quence of limited study power, if the true effect of these phenotypes
is marginal. Furthermore, the causal effects estimated by MR-Egger
were nonsignificant for many phenotypes, although this may have
been the result of the reduced power of this test to detect causal
effects compared with other MR methodologies.35

The strength of our MR study is the exploitation of large GWAS data
sets to examine the relationship between multiple phenotypes and
risk of MM, thereby increasing study power and enabling us to
demonstrate effects of small magnitude. A central assumption in
MR is that the variants used as IVs are associated with the exposure
being investigated. To ensure this was the case, we only used SNPs
associated with exposure traits at genome-wide significance (P ,
5 3 1028) from GWASs. Furthermore, only GWASs of European
populations were used to limit bias from population stratification.
Our analysis does, however, have limitations. Firstly, we were limited
to studying phenotypes with genetic instruments available. Sec-
ondly, correcting for multiple testing inevitably means the potential
for false negatives is not unsubstantial. Thirdly, even though we only
considered traits for which we had $80% study power at ORSD of
1.50, for a large number of traits, we still had limited power to
demonstrate causal associations of small effect.

In conclusion, our study provides further insight into the landscape
of MM etiology and sheds light on factors for which the evidence
from conventional epidemiological studies has been mixed.

Specifically, we provide evidence against any of 249 traits being
major risk factors for the development of MM. The advent of larger
meta-analyses of MM GWAS data sets and exposures offers the
prospect of using MR-based strategies to search for possible
causal associations with smaller effect sizes.
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