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Abstract

Purpose Radiofrequency ablation (RFA) is a curative treatment option for small lung metastases, which conventionally
involves multiple freehand manipulations until the treating electrode is satisfactorily positioned. Stereotactic and robotic

guidance has been gaining popularity for liver ablation, although has not been established in lung ablation. The purpose
of this study is to determine the feasibility, safety, and accuracy of robotic RFA for pulmonary metastases, and compare
procedures with a conventional freehand cohort.

Methods A single center study with prospective robotic cohort, and retrospective freehand cohort. RFA was performed under
general anesthesia using high frequency jet ventilation and CT guidance. Main outcomes were (i) feasibility/technical success
(ii) safety using Common Terminology Criteria for Adverse Events (iii) targeting accuracy (iv) number of needle manipulations
for satisfactory ablation. Robotic and freehand cohorts were compared using Mann—Whitney U tests for continuous variables,
and Fisher’s exact for categorical variables.

Results Thirty-nine patients (mean age 65 £ 13 years, 20 men) underwent ablation of 44 pulmonary metastases at single
specialist cancer center between July 2019 and August 2022. 20 consecutive participants underwent robotic ablation, and
20 consecutive patients underwent freehand ablation. All 20/20 (100%) robotic procedures were technically successful, and
none were converted to freehand procedures. There were 6/20 (30%) adverse events in the robotic cohort, and 15/20 (75%)
in the freehand cohort (P = 0.01). Robotic placement was highly accurate with 6 mm tip-to-target distance (range 0—14 mm)
despite out-of-plane approaches, with fewer manipulations than freehand placement (median O vs. 4.5 manipulations, P <
0.001 and 7/22, 32% vs. 22/22, 100%, P < 0.001).

Conclusions Robotic radiofrequency ablation of pulmonary metastases with general anesthesia and high frequency jet ven-
tilation is feasible and safe. Targeting accuracy is high, and fewer needle/electrode manipulations are required to achieve a
satisfactory position for ablation than freehand placement, with early indications of reduced complications.
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Introduction

Radiofrequency ablation (RFA) is a minimally invasive ther-
mal treatment strategy that can cure small lung metastases,
and causes minimal damage to lung parenchyma [1] such that
lung function does not change significantly following treat-
ment [2, 3], with low postprocedural pain [4], short (usually
overnight) hospital stay [5] and effective local control, around
90%, which persists up to 3 years at least [6, 7].

RFA conventionally requires multiple freehand needle
manipulations until a satisfactory electrode position is
achieved, and can be technically demanding, e.g., where
skeletal structures make in-plane approaches impossible.
Needle manipulations damage lung parenchyma, where more
manipulations have been associated with higher complica-
tion rates including pneumothorax [8, 9] in up to 67% of
procedures [10]. Major complication rates of around 5-10%
include pneumonia, massive hemorrhage, bronchopleural fis-
tula, air embolism, and damage to critical structures, e.g., the
brachial plexus [8, 11].

A technique which offers high needle placement accuracy
and reduces the number of manipulations would therefore be
welcome. Navigated (stereotactic and robotic) approaches
have been widely used in liver tumor ablation [12], where
randomized studies comparing freehand and navigated nee-
dle placement showed significantly fewer manipulations
[13], reduced needle placement time, and improved accuracy
[14] over conventional freehand placement. However, use of
stereotactic and robotic techniques for lung tumor ablation
have not been established in the literature.

Our group has recently started a practice in robotic
interventions for biopsy and ablation procedures [15]. The
purpose of this study is to determine the feasibility, safety,
and targeting accuracy of robotic RFA for pulmonary metas-
tases with high frequency jet ventilation. We hypothesized
that robotic guidance was feasible, safe and could produce
accurate targeting, necessitating fewer needle manipulations
than with freehand guidance.

Materials and methods
Study procedures

This study was approved by the institutional review board,
and written informed consent was obtained from all patients.
Procedures were performed at a single institution, (The Royal
Marsden Hospital), a specialist cancer center in (London)
between July 2019 and August 2022. Robotic lung RFA
procedures started in August 2021, and no freehand RFA
procedures were performed thereafter due to complete insti-
tutional practice change. Consecutive patients undergoing
robotic lung RFA formed a “robotic cohort” where data were
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collected prospectively. Cases were matched with an equal
number of retrospective consecutive patients meeting the eli-
gibility criteria who underwent freehand needle placement,
prior to introduction of robotic guidance to form a “freehand
cohort”.

Study participants

Inclusion criteria were (i) patients undergoing RFA of lung
metastases (i) one or more tumors < 30 mm (iii) able to
undergo general anesthesia following review in preassess-
ment clinic. Exclusion criteria were (i) energies other than
RFA (ii) use of a non-robotic stereotactic device. All patients
were discussed and recruited from multidisciplinary tumor
board, attended by Medical and Radiation Oncologists,
surgeons, pathologists, diagnostic and Interventional Radi-
ologists where imaging, clinical, and laboratory data were
reviewed, and alternative treatments considered. No follow-
up was required due to focus upon feasibility, safety, and
procedural technique.

Procedures

Our team comprised (i) a minimum of one board certified
Consultant Interventional Radiologist from a group of four,
who performed procedures (EJ, 4 years’ experience, and NK
14 years’ experience, JMC, 19 years’ experience and NF,
17 years’ experience of lung RFA), (ii) two Radiographers
who acquired images, operated the CT scanner and RF gen-
erator (iii) a Consultant Anesthetist and Anesthetic assistant
who delivered the anesthetic (iv) a Nurse who cared for the
patient and provided equipment. Our initial experience with
robotic procedures has been reported previously [15]. We had
performed 22 robotic procedures in total (7 biopsies, 15 liver
ablations) before attempting robotic lung RFA.

Preparation

After consent, a team brief was carried out and a World Health
Organization safety checklist completed. Procedures were
performed in a CT scanner with 64 detector rows (Siemens
Definition Edge, Erlangen, DE) under general anesthesia
with patients positioned to facilitate optimal electrode path.
RF ground pads were applied and high frequency jet ventila-
tion (Monsoon Acutronic Jet ventilation system III, Hirzel,
CH) was used up to 200 breaths/minute to minimize respira-
tory excursion, with transcutaneous CO, monitoring (Sentec
AG, Therwill, CH) to maintain normocapnia.

Acquisitions

For all procedures, spiral CT images were acquired in
the axial plane for procedure planning and post procedure



International Journal of Computer Assisted Radiology and Surgery

assessment without intravenous contrast using a 3 mm slice
thickness with 3 mm interval for freehand procedures, and
1 mm slice interval for robotic procedures.

Procedures

Tumor targeting in all procedures was performed using a
15 cm co-axial needle (LeVeen CoAcess, Boston Scientific,
Marlborough, MA), manipulated manually until judged as
satisfactory for complete transverse coverage of the index
tumor by the electrode tines. For freehand procedures, needle
manipulations were monitored using intermittent low dose
‘sequential’ acquisitions each time the needle was manipu-
lated by the operator, while still in the scanner.

Robotic procedures

Procedures were performed using a CE marked, FDA
approved robotic device (Perfint MAXIO, Perfint Pvt, Chen-
nai, IN), licensed for CT guided procedures in the thorax,
abdomen and pelvis [16]. After induction of anesthesia and
prior to scanning, patients were immobilized using a vac-
uum mattress (Klarity Vacuum Bag, OH) to reduce external
motion. The device was switched on and docked, and a ster-
ile field prepared. After scanning, DICOM images were sent
to the robot which has a planning workstation where tumors

Fig. 1 Example out-of-plane
robotic radiofrequency lung a
ablation in a 79-year-old woman
with a 12 mm solitary right lower
lobe uterine leiomyosarcoma
metastasis. Orbital angulation
was — 1.04°, craniocaudal
angulation 11.32° and target
depth 45.87 mm. (a) Unenhanced
(7

planning axial CT image
showing the tumor near the
mediastinal pleural reflection,
where the position of the
vertebrae and ribs meant an
in-plane approach required
traversal of more parenchyma
(b) photograph demonstrating
the out-of-plane approach taken
by the needle/electrode system
(c) unenhanced axial CT image
showing the electrode tip
ablating the lesion following
single co-axial needle placement
(no manipulations required).

(d) cinematic rendering
demonstrating an oblique course
of the co-axial needle through the
posterior ribs to reach the tumor

—
TN

2
2

were segmented, and an appropriate path selected, includ-
ing out-of-plane approaches to avoid collision with the ribs
if necessary. Once confirmed, the planned needle path was
reproduced in three-dimensional space by the electrome-
chanical arm using instructions sent from the workstation.
A cut was made in the skin at the needle entry point (marked
by a laser on the device) and the co-axial needle inserted
into the patient manually by the operator via an appropri-
ate needle guide attached to the end effector of the robotic
device. A control spiral CT was then carried out, defining
the first needle placement position with respect to the target
tumor. The robotic device does not manipulate the needle
once positioned, meaning manual adjustments can be made
at this point if necessary.

Ablation

Treatment was carried out using an ablation electrode with an
array diameter chosen by the operator according to the size of
the index tumor (3, 3.5 or 4 cm). An RF generator (RF2000,
Boston Scientific, Marlborough, MA) delivered incremen-
tal power increase until ‘roll off’ (impedance rise) was
achieved twice, according to the manufacturers’ instructions
[3]. Further needle/electrode manipulation and two over-
lapping ablation zones were sometimes required to achieve
complete tumor coverage in the longitudinal direction (of
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the shaft), according to operator discretion. Example images
from a typical robotic ablation procedure are provided in
Fig. 1. Following ablation, a repeat spiral CT was performed
to assess for complications and coverage of the tumor by
the ablation zone, where treatment success was defined as
a penumbra of ground-glass opacification > 5 mm [17].
Delayed pneumothorax was further assessed by a chest radio-
graph performed 2 h post procedure and managed with a chest
drain if > 2 cm or increasing in size.

Data analysis

Data were collected on per patient, per session and per lesion
levels [18]. Baseline characteristics comprised age, sex, can-
cer type and prior treatments per patient, concomitant liver
ablation in the same session, number of target tumors per
session, and lesion size, distance from pleura, and lobe.

The four main outcomes of interest were (i) technical suc-
cess, defined as complete coverage of the target tumor(s)
by the ablation zone(s) in both cohorts (per session), and
no conversion to freehand (undocking and use of sequen-
tial acquisitions) in the robotic cohort (ii) overall safety as
judged by Common Terminology Criteria for Adverse Events
(CTCAE) version 5.0 [19] (per session), (iii) robotic needle
placement accuracy (per lesion) iv) number of needle manip-
ulations required to achieve satisfactory position for ablation
(per lesion).

Other per session outcomes comprised: (i) RF electrode
array diameter (ii) total dose length product (mGy*cm) (iii)
pneumothorax, as judged on both post procedure CT and 2-h
chest radiograph (iv) chest drain insertion and (v) duration of
hospital admission. Other per lesion outcomes comprised: (i)
number of overlapping ablation zones (ii) actual procedure
time (total procedure time minus anesthetic and patient posi-
tioning time, from topogram to completion CT). (iii) length
of pulmonary transgression (iv) Orbital angulation, cranio-
caudal angulation, and target depth for robotic procedures.

Image analysis

DICOM images were analyzed on a PACS workstation
(IDS7, SECTRA, Linkoping, SWE) by a radiology fellow
(AH, in training, 9 years’ experience of image analysis)
blinded to all other clinical variables and unaware of the study
purpose. Needle tip-to-target distance following first needle
placement was measured in the robotic cohort using multi-
planar reformats, and the length of pulmonary transgression
was measured in both cohorts (Fig. 2). In the robotic cohort,
planning and first placement CTs were fused, and standard-
ized first needle placement targeting errors measured by an
Interventional Radiologist (EJ) using the robotic workstation
(Euclidian, longitudinal, lateral and angular errors between
planned and actual needle paths [13, 20]). An example of
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Fig.2 Unenhanced multiplanar reformat CT images of an 85-year-old
man undergoing ablation of a left lower lobe sigmoid cancer lung
metastasis. Images show measurement of first co-axial needle place-
ment tip-to-target distance of 6.4 mm, and a parenchymal transgression
length of 42 mm. N.B. This degree of error may be tolerable for satis-
factory ablation due to array diameter of 3 cm or greater

fused images is provided in Fig. 3. N.B. these data were
unavailable for the freehand cohort due to use of sequential
acquisitions for first needle placement which did not always
include the needle tip and target.

Patient age, sex, cancer type, number of prior treatments
(chemotherapy lines, radiotherapy and surgery), duration of
hospital admission, and complications were collected from
electronic hospital records, and all other data were obtained
from DICOM images and procedure reports.

Statistical analysis
Study size

No formal prospective sample size calculation was carried
out for this initial study focusing upon safety and feasibility.
However, a post-hoc power calculation was performed for
differences in the number of needle manipulations required
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Fig. 3 Example images from the robotic workstation, during a radiofre-
quency lung ablation in a 76-year-old woman with a 6 mm rectal cancer
lung metastasis in the right upper lobe. (a) unenhanced planning CT
with multiplanar reformats, showing the planned needle path in magenta

for adequate ablation between the robotic versus freehand
cohorts using G*Power 3.1 (Universitdt Diisseldorf, DE).
Using a two tailed Mann—Whitney test at an alpha of 0.05,
with 20 in each cohort and an effect size of 1.81 (calculated
from the mean and standard deviation of both cohorts), our
power was > 0.99.

Analysis

Data were analyzed using GraphPad Prism 9.4.1 (Graph-
Pad, San Diego, Calif). All data were checked for normality
using the Shapiro—Wilk test. Differences in continuous and
ordinal variables were compared using independent sample ¢
tests or Mann—Whitney U tests, and contingency tables were
compared using Fisher’s exact testing. Both cohorts were
compared in terms of baseline characteristics, to assess for
potential confounding variables.

Statistical significance was set at P < 0.05. There were no
missing data, apart from the single patient excluded from the
study due to lack of available postprocedural images to carry
out the relevant analyses.

Results
Patient cohorts

After exclusion of 53 patients who did not meet the eligibility
criteria and one patient without available images, thirty-nine
patients, mean age 65 =+ 13 years (20 men) were treated in 40
RFA sessions for 44 lung metastases between July 2019 and
August 2022, one session per patient apart from one patient

(b) fused planning and needle placement CTs with multiplanar refor-
mats, showing the planned needle path in magenta, and actual needle
placement in solid green (¢) multiplanar reformats of needle placement
CT

who was treated in two sessions (contralateral lungs) in both
the robotic and freehand cohorts, to give n = 20 in both in
both cohorts. A summary recruitment flow diagram is shown
in Fig. 4. Per patient, per session and per lesion baseline
characteristics for the two cohorts are provided in Table 1,
and no differences between the cohorts reached statistical
significance.

Main results
Technical success

All twenty (100%) of procedures were technically successful
in both cohorts, and no robotic procedures were converted to
freehand.

Safety

Six adverse events in the robotic cohort were pneumothorax
of which four were managed conservatively (mild, grade I)
and 2 were managed with chest drain insertion (moderate,
grade II). There were fifteen session-level adverse events in
total in the freehand cohort, of which eleven were managed
conservatively (grade I), with ten pneumothoraces, and one
instance of mild dyspnea. Three pneumothoraces were man-
aged with drain insertion (grade II), and the single grade III
adverse event was a multiterritory embolic stroke with good
functional recovery following 10 days’ hospital admission
and ongoing rehabilitation. Differences in adverse events
reached statistical significance (P = 0.01).

While the percentage of pneumothoraces was consider-
ably lower in robotic cohort (30% vs. 65%), the differences
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Potentially eligible
patients n = 93

Excluded n = 53
51 microwave ablations
1 cryoablation
1 other stereotactic device

Y

Y

Eligible patients
n=40

Excluded n=1
No images available

Y

Y

Included patients

n=39
Y Y
Robotic cohort Freehand cohort
2 tient: 2 tient;
0 pa Ieﬁ s LCEEEEE 1 patient in both cohorts----- > 0 pa I?n S
20 sessions 20 sessions
22 lesions 22 lesions

Baseline characteristics
Per patient: Age, sex, cancer type, prior treatments
Per session: target tumor number, concomitant liver ablation
Per lesion: size, distance from pleura, lobe

|

Outcomes

Per patient: None

Per session: Safety*, technical success*, RF electrode
diameter, total DLP, pneumothorax, chest tube insertion,
hospital stay

Per lesion: Number of needle manipulations*, procedure
duration, technical success, number of overlapping ablation
zones

Fig.4 Flow diagram of study methods. The main outcomes of interest
are indicated with an asterisk. Accuracy metrics were also calculated for
the robotic cohort. DLP = dose length product. RF = radiofrequency

did not reach statistical significance (P = 0.06), nor did chest
drain insertion (2 vs. 3, P > 0.99).

Robotic needle placement

Twenty-two needle insertions had a median orbital angula-
tion of — 0.78° (range — 37.8 to 68.2°), craniocaudal angu-
lation 0° (— 10.7 to 19.6°) and target depth 73.5 mm (range
45.2-118.7 mm). Median tip-to-target distance was 6.0 mm
(0-14.0 mm). Euclidian error was 5.1 mm (0-12.5 mm), lat-
eral error was 4.0 mm (0-8.0 mm), longitudinal error was
3.3 mm (0-10.6 mm), and angular error was 5.6° (0-10.9°).
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Needle insertion

There were fewer needle manipulations in the robotic versus
the freehand cohort, median O versus 4.5, P < 0.001, where
7/22 (32%) required manipulation in the robotic cohort ver-
sus 22/22 (100%) in the freehand cohort (Fig. 5). Smaller
array diameter electrodes were used in the robotic versus
freehand cohort (3 vs. 3.5 cm, P < 0.001). A summary of
results comparing technical outcomes between robotic ver-
sus freehand procedures is shown in Table 2.

Discussion

Here we assessed the feasibility, safety, and targeting accu-
racy of robot guided Radiofrequency ablation (RFA) for
pulmonary metastases. All our attempted robotic procedures
were technically successful (20/20, 100%), with fewer com-
plications (6 vs. 15/20, P = 0.01) and needle manipulations
(0 vs. 4.5, P < 0.001) than a similar retrospective cohort of
freehand procedures, despite relatively small sample size.

Procedures were successfully performed with relatively
little prior experience of robotic interventions, meaning the
learning curve is short. However, since the MAXIO robot
assumes no movement of the target tumor, we made all
efforts to keep the time between acquisition and needle
insertion as short as possible to minimize target movement,
including preparing the sterile field, and opening equipment
before scanning. The speed of positioning the electromechan-
ical arm is a potential advantage of robotic over manually
operated stereotactic instruments, and while intermittent
endotracheal tube disconnection has been successfully used
in liver ablation [21], high frequency jet ventilation can min-
imize atelectasis and derecruitment as a source of target
movement and obscuration. Importantly, jet ventilation is
used continuously following induction of anesthesia and so
the reduced degree of target movement remains consistent
from planning to needle insertion and treatment. Although
median actual procedure time was shorter in the robotic
cohort (29 vs. 39.5 min), differences did not reach statistical
significance (P = 0.06).

While the proportion of pneumothoraces was also lower in
the robotic cohort (30 vs. 65%), differences did not reach sta-
tistical significance (P = 0.06), nor did drain insertion (10 vs.
15%, P > 0.99). Pneumothorax rates vary widely in the litera-
ture, between 11 and 67% [10, 22], and the ability to compare
proportions using two different techniques in similar popu-
lations at a single center is a strength of this study. A handful
of studies have shown that traversal of a greater length of
lung parenchyma is associated with higher rates of pneu-
mothorax [23-26], likewise fissure traversal, and ablation
zones which encompass pleura [27]. Since all these factors
can be influenced by careful multiplanar planning, including
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Table 1 Baseline characteristics

(per patient, per session and per Characteristic Robotic cohort Freehand cohort P value

lesion)
Per patient n =20 n=20
Age, years—median (IQR) 72 (50-85) 61 (55-73) 0.42
Sex 0.75
Male—n (%) 10 (50) 12 (60)
Female—n (%) 10 (50) 8 (40)
Cancer type >0.99
CRC—n (%) 13 (65) 13 (65)
Other gastrointestinal—n (%) 2 (10) 1(5)
Sarcoma—n (%) 3(15) 5(25)
Other—n (%) 2 (10) 1(5)
Lines chemotherapy—median (IQR) 2 (1-2.8) 1.5 (1-2.8) 0.73
Radiotherapy—n (%) 11 (55) 7(35) 0.34
Surgery—n (%) 18 (90) 17 (85) >0.99
Per session n =20 n=20
Concomitant liver ablation—n (%) 5(25) 4 (20) >0.99
Target tumors >0.99
1—n (%) 18 (90) 18 (90)
2—n (%) 2 (10) 2 (10)
Per lesion n=22 n=22
Size, mm—median (IQR) 10 (6-15) 12 (10-29) 0.07
Distance from pleura, mm-median (IQR) 9.5 (0.8-16) 6.0 (2-11) 0.48
Lobe 0.66
RUL—~n (%) 6 (27) 10 (45)
RML—n (%) 3(14) 1(5)
RLL—~n (%) 6 (27) 4(18)
LUL—n (%) 2(9) 3(14)
LLL—n (%) 5(23) 4(18)

CRC colorectal cancer, IQR interquartile range, LLL left upper lobe, LUL left upper lobe, RLL right lower
lobe, RML right middle lobe, RLL right lower lobe

out-of-plane needle trajectories to navigate through skeletal
structures (— 11 to + 20° in this study), robotic approaches
hold significant potential in reducing lung ablation related
complications.

Although robotic lung tumor ablation is poorly established
in the literature, our results are similar to stereotactic liver
ablation, were our Euclidian error of 5.1 mm is very similar
to the pooled error of 5.3 mm in a recent meta-analysis [12].
The high level of trust we developed in our technique meant
we used smaller array diameter electrodes than in freehand
procedures (3.0 vs. 3.5 mm, P = 0.001), without a need for
more overlapping ablation zones (P > 0.99), although broad
umbrella electrode configuration means a few millimeters of
imprecision can usually be tolerated. Our readjustment rate
of 32% is in accordance with Beyer et al., who repositioned
applicators in 41% (13/34) of liver ablations using the same
device [28].

We found that radiation dose was not slightly lower for
robotic versus freehand procedures (mean DLP 505 vs.
549 mGy*cm respectively, P = 0.76) which is unlike liver
ablation, where radiation dose is usually lower with nav-
igated procedures [12]. This could be explained by lung
ablation being approximately half to a quarter of the dose
of liver ablation [12], where single lesions are targeted by
single applicators, using a few additional low dose sequen-
tial acquisitions for freehand needle adjustments.

The limitations to this study include retrospective data
collection for the freehand cohort, meaning we were unable
to make first needle placement accuracy measurements. A
prospective randomized study would enable these data to be
collected[13, 14], and would also control for confounding
[29]. While both cohorts similar in baseline characteristics,
lesion size was skewed by three lesions nearly 3 cm in
the freehand cohort which likely reflects random variation
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Fig.5 Number of needle manipulations required to gain an acceptable
position of the co-axial needle prior to ablation in the robotic and free-

with small sample size. However, this initial study focused
upon feasibility, safety, and targeting accuracy and achieved
high power for the number of needle manipulations versus
a similar cohort of patients who underwent freehand nee-
dle/electrode placement.

Further prospective, randomized studies should be per-
formed in more than one center, powered for clinically
relevant endpoints, e.g., complications including pneumoth-
orax. Other ablation energies, and stereotactic devices could
be investigated, although we decided to first develop robotic
RFA due to its sharp, rigid co-axial needle, lower cost, and
high rates of local control without evidence of inferiority
versus microwave ablation [4, 30].

In summary, robotic radiofrequency ablation of pul-
monary metastases with general anesthesia and high fre-
quency jet ventilation is feasible and safe. Targeting accu-
racy is high, and fewer needle/electrode manipulations are
required than freehand placement to achieve a satisfactory
position for ablation, with early indications of reduced com-

hand cohorts

Table 2 Outcomes of robotic

plications.

versus freehand procedures Outcome Robotic cohort Freehand cohort P value
Per session n=20 n=20
Overall adverse events (CTCAE)—n (%) 6 (30) 15 (75) 0.01
None—n (%) 14 (70) 5(25)
Grade 1—n (%) 4(20) 11 (55)
Grade 2—n (%) 2 (10) 3(15)
Grade 3—n (%) 0 1(5)
Grade 4—n (%) 0 0
Grade 5—n (%) 0 0
Technical success—n (%) 20 (100) 20 (100) >0.99
RF electrode diameter—median (IQR) 3(3-3.5) 3.53.54) 0.001
Total DLP (mGy*cm)—median (IQR) 505 (254-845) 549 (303-545) 0.76
Pneumothorax 6 (30) 13 (65) 0.06
Chest drain insertion 2 (10) 3(15) >0.99
Hospital stay (days)—median (IQR) 1 (1-1.75) 1 (1-1.75) 0.92
Per lesion n=22 n=22
Number of needle manipulations—median (IQR) 0(0-1) 4.5 (3.8-6.3) <0.001
Number requiring manipulation—n (%) 7(32) 22 (100) <0.001
Pulmonary transgression (mm)—median (IQR) 28.5 (22-48) 37 (20-46) 0.97
Number of overlapping ablation zones 0.74
1—n (%) 17 15
2—n (%) 5 7
Actual procedure time (mins)—median (IQR) 29.0 (22-39.5) 39.5 (28-48) 0.06
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CTCAE Common Terminology Criteria for Adverse Events, DLP dose length product, IQR interquartile

range, RF radiofrequency
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intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
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