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Abstract 

Motivation: Mass spectrometry (MS) based quantitative proteomics experiments typically 

assay a subset of up to 60% of the ~20,000 human protein coding genes. Computational 

methods for imputing the missing values using RNA expression data usually allow only for 
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imputations of proteins measured in at least some of the samples. In silico methods for 

comprehensively estimating abundances across all proteins are still missing. 

Results: We propose a novel method using deep learning to extrapolate the observed protein 

expression values in label-free MS experiments to all proteins, leveraging gene functional 

annotations and RNA measurements as key predictive attributes. We tested our method on four 

datasets, including human cell lines and human and mouse tissues. Our method predicts the 

protein expression values with average    scores between 0.46 and 0.54, which is significantly 

better than predictions based on correlations using the RNA expression data alone. Moreover, 

we demonstrate that the derived models can be “transferred” across experiments and species. 

For instance, the model derived from human tissues gave a         when applied to mouse 

tissue data. We conclude that protein abundances generated in label free MS experiments can be 

computationally predicted using functional annotated attributes and can be used to highlight 

aberrant protein abundance values. 

Statement of Significance 

Proteome of eukaryotic organisms is highly complex and has dynamic range of many orders of 

magnitude. It is therefore not surprising that despite significant technological advances, 

proteomic mass spectrometry experiments continue to be limited in coverage and depth 

compared to genomics. Most proteomics experiments thus quantify only part of the proteome, 

leaving many proteins “unobserved” even they may be present in the proteome. Here, we show 

that using deep learning techniques we can leverage gene annotation and RNAseq data to 

extrapolate the available protein abundances to unobserved proteins in a given experiment. 

Previous studies have applied machine learning methods to impute partial missing values 

across experiments and to predict protein abundance across similar samples. The approach 

presented here, is the first to attempt to predict unobserved proteins and thus to provide a 

method for increasing coverage of the proteome, which is an important development for 

comparative proteogenomic analyses. Additionally our method highlights aberrantly expressed 

proteins; these can either be due to biological perturbation or technical and annotational issues 

in the data. Overall, this study further integrates proteomics and genomics data to advance our 

understanding of their biological relationships. 

1 Introduction 

Mass spectrometry (MS)-based proteomics is routinely used to measure the abundance of 

proteins in biological samples. However, due to technical limitations and restrictions in the 

limits of detection and dynamic range of analyses performed, complete proteomes of complex 

biological samples are never fully characterised and quantified.[1][2][3] Missing protein 

expression values are a constant confounding factor in the downstream analysis. 

As schematically shown in Figure 1, protein expression missing values can be classified into 

three categories: (i) unobserved proteins, with no identifiable peptides in any samples and/or 

MS runs; (ii) intermittently detected proteins, present in some but not in all experimental 

samples and/or MS runs; and (iii) ambiguous and aberrantly expressed proteins, where it is not 



www.proteomics-journal.com Page 3 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

3 

possible to distinguish or correctly quantify proteins based on the detected peptides, due to 

limitations caused by the protein inference. There are various technical and biological 

explanations for the lack of experimental observation of any given protein. Biological 

explanations include restricted expression, proteoform complexity and abundance level. 

Technical reasons, which are most frequently associated with peptide observability, include 

peptide ionisation, sample complexity and spectral quality, among others. 

To cope with missing protein values in proteomics experiments various methods have been 

developed to impute the expression values.[4][5] These approaches try to fill intermittent missing 

values across MS runs using simple or sophisticated models built on a larger set of data. There 

are four main approaches for imputation of missing values. One is to use multidimensional 

spectral alignments to match MS1 peaks between runs to increase the number of identifications 

between runs and assign real intensity values to missing peptides and proteins. The second 

approach uses fixed constant single-values, which can be a minimal value, making the 

assumption that a protein is missing due to low abundance. Alternatively, an average value can 

be used, with the assumption being that a general 1:1 ratio across runs will cause less bias. The 

third approach uses local similarity to find peptides or proteins with similar expression profiles 

within the same dataset and then use these as the basis for estimating missing values. Finally, 

the missing values can be reconstituted from a global model using methods such as regression, 

probabilistic principal component analysis, Bayesian component analysis and data 

normalisation techniques. These sophisticated methods can produce a more nuanced missing 

value imputation at a higher computational cost. 

A major shortcoming of all the current imputation methods is that they only deal with 

intermittently detected proteins, requiring identification and quantification of the protein in 

some samples to support the modelling algorithm. With the rise of proteogenomic approaches it 

is becoming increasingly common to perform both proteomic MS and RNAseq analysis in the 

same samples. In fact, several recent large-scale studies have compared transcript and protein 

expression. These studies report a wide range in the correlation of protein and transcript 

expression across different genes, tissues and samples, which overall is found to be moderately 

positive, although exact numbers vary enormously.[6][7][8] It has been shown that there are 

certain classes of proteins that are more closely regulated at the transcriptional level than 

others. Specifically, proteins with highly variable expression such as metabolic and immune 

related proteins often correlate well whereas slow turn-over proteins and those in stable 

complexes often correlate poorly.[9][10][11] 
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Figure 1. Summary of the approach: A. using deep learning methods to predict the values for unobserved 

proteins in MS-proteomics experiments. Measured protein expression values in combination with context 

information such as functional annotations and RNAseq measurements are used to train a neural network 

which can predict protein expression for all proteins including those not experimentally measured in any 

sample. B. The deep learning network architecture for predicting the protein abundance values based on 

RNA and gene annotations: Blue nodes represent inputs, the green nodes outputs, and the orange nodes 

represent intermediate layers. In parentheses dimensionalities of input and output vectors as well as 

those of the network layers are shown.  

 

Recently, prediction of protein expression levels in samples derived from cancer patients has 

been the subject of an NCI-CPTAC DREAM proteogenomics challenge [12][13]. The teams used 

linear and non-linear models to evaluate prediction of proteomes from genomics data and 

prior information for unobserved samples. However, to the best of our knowledge, none of the 

existing approaches attempt to estimate the expression of the experimentally unobserved 
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proteins. Here we close this gap by proposing a novel method that estimates the expression of 

unobserved (absent) proteins, where no expression values are recorded in any of the given 

proteomics datasets. Specifically, we describe a novel method leveraging deep learning (DL) to 

generate a predictive model based on existing measured protein expression values, RNA 

expression values for all genes in the same or similar samples, and available gene annotations 

such as Gene Ontology (GO) and UniProt Keywords. We apply the DL approach beyond 

imputation of partially missing values or additional samples to predict all unobserved protein 

abundances in label free MS experiments. The method predicts the protein expression values 

with average    scores between 0.46 and 0.54, which is significantly better than predictions 

based on correlations using the RNA expression data alone. Moreover, we show that the 

derived models can be “transferred” across experiments and species. Finally, we demonstrate 

that such predictive models can highlight aberrant expression patterns and infer abundances 

for ambiguous proteins more reliably. 

2 Methods 

2.1 Datasets and their preparation 
The label free MS experiments used in this study included three human datasets: Tissue13 (13 

tissues and 9,637 genes, extracted from the reprocessed Draft Human Proteome,[14][15] NCI60 

(46 cell lines and 8,000 genes),[16] and Tissue29 (29 tissues and 12,879 genes).[17] We also used a 

label free mouse tissue dataset MouseTissue3 (3 tissues and 6,591 genes).[18] All RNA and 

proteome datasets were downloaded from EBI’s Expression Atlas,[19] with proteomics data for 

Tissue13 (dataset PXD000561 and its re-analysis PXD002967), NCI60 (PXD005940) and 

Tissue29 (dataset PXD010154) measurements based on raw data from the PRIDE 

database).[20][21][22][23] For more information on these datasets and references see Supporting 

Information. 

Both proteomics and RNAseq abundances are represented as log transformations. To deal with 

zero values in RNAseq data, in the literature typically a function           is used, where   is 

the value of the measurement on the original scale and   is a constant, common for the entire 

dataset. As in most other studies, we used     (the choice of   is not scale invariant, but     

is sufficiently small for the ranges of the values included in the datasets considered here). 

Two real value matrices were used as input data to our algorithm, where rows correspond to 

genes/proteins, while columns correspond to samples (tissues or cell lines). The first matrix 

contained RNA abundance measurement values and it was assumed that every gene and every 

sample in this matrix had a defined value (i.e., there were no missing or unobserved gene 

values). The second matrix contained label free protein abundances as quantified in the 

respective datasets, where some elements, including entire rows, may be missing. Unobserved 

or missing values in the proteomics data were ignored when training the neural network. In 

addition, genes were annotated by context information, specifically using Gene Ontology (GO) 

terms or UniProt Keywords (KW), where each gene can have more than one term assigned and 

the same term can be used to annotate several genes. Our goal was to extrapolate the protein 

abundance values to all genes in the matrix using all the available data, as shown in Figure 1. 
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2.2 Computational experiments 
For the prediction of protein abundance values, we used a specially developed DL network. To 

train the network for a particular subset of genes, the input given was the measured protein 

abundances, the RNA expression values, and a binary vector for each gene, describing context 

information (such as GO terms and/or UniProt keywords). The trained network was then used 

to make protein abundance predictions, which are based on the equations           

         , where      and      are the protein and RNA abundances for each gene  , and the 

coefficients      and      are computed from the information provided to the network. It 

should be noted that the coefficients      and       are specific to each gene and are derived 

from the supplied context information in a non-linear way. Further details of network 

architecture are provided in the Supporting Information. 

The gene set for each experiment was partitioned randomly into 10 subsets. Over ten iterations 

10 models were then built using a training set comprising 90% (9 subsets) of the data and a test 

set using the remaining 10% (single subset). In each iteration we trained a DL network on all 

available information (RNA values, sample identification and functional annotations) for each 

training set. The protein values in the test set were then predicted by applying the obtained 

model to the annotations and RNA values of the genes excluded in the training set. By repeating 

the process excluding a different subset each time we obtained a predicted abundance value for 

every protein in the dataset. We call each of these described experiments a run. For each dataset 

we performed 10 runs based on different randomizations of the initial set to validate the 

stability of the predictions. In total 100 models were generated and applied for each 

experiment. We also considered the problem of the unobserved protein expression value 

prediction only using RNA information or excluding it from the model, i.e., only using gene 

annotations. 

Depending on the information used for the training, we considered several prediction models: 

RNA (only), GO, KW, RNA+GO, RNA+KW, RNA+GO+KW and Randomised (the abbreviations 

indicate the information that is presented to the DL network). The Randomised model was used 

as a baseline comparison with the predictions, and was based on RNA and context information 

being randomly permuted between the genes in the dataset. The predictions were compared to 

the measured abundance values for proteins in the test set for which the experimental 

measurements were available.  

As a natural benchmark for comparison we also considered linear regression (LR) based 

predictions from the RNAseq values. Not surprisingly DL models trained using only RNA and LR 

model predictions were almost identical (with small fluctuations for RNA between different 

runs) – without any context information provided to DL network one can hardly expect better 

predictions than LR, and the fact that these values largely matched at least partially re-confirms 

that the proposed network design is conceptually sound. Thus, we further discuss only LR 

results because they are a simpler and a more familiar benchmark. 
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The fact that predictions were based on gene-specific coefficients      and      allows 

precomputation of these on one dataset and then testing their predictive value for the same or 

for homologous genes in different datasets (of the same or different species). 

In the case of the dataset MouseTissue3, the experiments did not include the models with KW 

data. However, we tested the inter-species applicability of the computed gene-specific 

coefficients      and      for homologous genes. These coefficients were computed from 

Tissue29 for the two tissues it shares with the dataset MouseTissue3 (liver and testis) using the 

RNA+GO+KW model, and then applied for the prediction of protein abundances for 5,388 

homologous genes from the MouseTissue3 dataset. For detailed description see Supporting 

Information. 

2.3 Measures of prediction accuracy 

We assessed the prediction accuracy using the    score, which has been adapted almost 

exclusively in all the related work (and in most cases is simply derived from Pearson’s 

correlation coefficient   by taking      ). For a given dataset      
  is the average score over 

the whole dataset,       is the score for a specific tissue (or cell line)  .      
  denotes the 

average score over all tissues, and     
  and     

  refer to the highest and lowest prediction 

accuracies for tissues within a given dataset. The exact formulas for computation of the    

scores are provided in Supporting Information. We introduce the notions of        , which 

shows the contribution of gene   to the overall prediction accuracy      
 ,         , showing 

gene contribution to prediction accuracy for specific tissue      , and     
     – average 

contribution of gene to prediction accuracy over all tissues. 

3 Results 

3.1 Predictions on the human datasets 
For the three human datasets, we tested all 7 DL network-based prediction models and 

compared them to the LR as a benchmark as well as to the Randomised model. As already noted 

in Material and Methods, the LR and RNA only models produced almost identical results, 

therefore the latter is not discussed. The prediction accuracy generated for these datasets is 

summarised in Table 1 and Figure 2. 

 Tissue13 NCI60 Tissue29 

Model     
      

       
       

      
      

       
       

      
      

       
       

  

LR 0.076  0.256  0.131 0.163 0.157 0.379 0.315 0.319 0.139 0.368 0.242 0.248 

KW 0.221  0.310  0.273 0.302 0.163 0.318 0.283 0.287 0.235 0.396 0.347 0.352 

GO 0.283 0.382 0.339 0.369 0.148 0.333 0.303 0.307 0.221 0.416 0.371 0.375 
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RNA+KW 0.359 0.498 0.410 0.433 0.232 0.549 0.488 0.493 0.323 0.585 0.488 0.493 

RNA+GO 0.388 0.545 0.444 0.469 0.224 0.543 0.483 0.488 0.321 0.600 0.500 0.505 

RNA+GO+
KW 

0.408 0.557 0.463 0.488 0.236 0.570 0.508 0.514 0.347 0.631 0.538 0.543 

Table 1. The minimal, maximal and average prediction accuracy for the three human datasets and 

different prediction models. 

The first notable observation is that both KW and GO gene annotations alone provided better 

predictions of protein abundance than RNA (LR) abundances alone. The impact of KW and GO 

was roughly similar, although in most cases GO performed slightly better. However, despite the 

fact that RNA on its own was a poorer predictor, the GO or KW predictions improved 

significantly when they were used together with RNA expression values. These observations 

were consistent across all three human datasets. The best predictions were obtained by the 

RNA+KW+GO model with      
  values ranging between 0.49 and 0.54 (compared to the LR 

range of 0.16-0.32). At an individual tissue level, the best predictions were obtained for liver. 

Note that in this tissue the correlation between protein and RNA abundances were also the 

highest. A noticeable outlier was bone marrow in the Tissue29 dataset with         , but for 

most of the tissues   score       was close to the average value. The same was true for the NCI60 

dataset, which had two cell lines as outliers: HCT116 and X7860, with    equal to 0.236 and 

0.357 respectively. The improvement of the RNA+KW+GO model over the LR model was higher 

in the case of the tissue datasets than for the cell line dataset. 

The DL network can be trained on a dataset with any number of samples (tissues), however, the 

number of available samples has very limited impact on prediction accuracy, and even data on a 

single tissue gives similar accuracy as the use of the whole dataset. Regarding the number of 

data points (proteins), for the datasets tested it was observed that the prediction accuracy 

remained practically stable with less than 50% of randomly selected data points removed, and 

then started to drop significantly, if sizes of data sets were further reduced (e.g. for Tissue13 

dataset with 9637 proteins the prediction accuracy changes little until the reduced dataset 

contains at least 5000 proteins, but can start to drop rapidly, if smaller size subsets are chosen). 
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Figure 2. Percentages of genes (on the y axes) that can be predicted with    scores above a certain level 

(on the x axes). Data are shown for all three datasets, seven prediction models and average scores         

and     
    . For briefness, only    values within the range           are shown (i.e. all the curves 

eventually reach 100% mark, however, at a very low    values, ranging between 30 and 10). 

We also assessed the stability of      
  over different runs (from 10 runs in total for each 

dataset), obtaining Standard Deviation (SD) values ranging between 0.04 and 0.06 for the 

different prediction models and datasets, showing that the predictions are stable. The    values 

shown here represent averages over these 10 test runs. For the complete data of all 

experimental results covering all tissues and cell lines see Supporting Information. 

As one can observe in Figure 2, all the DL models (apart from Randomised) clearly outperformed 

LR. For the best prediction model RNA+GO+KW the ratio of gene pairs from all samples that 

could be predicted with the         score of at least 0.5 ranged from 72% (NCI60) to 77% 

(Tissue29), and from 51% to 59% in the case of the 0.8 score threshold. As a rough 

approximation these         thresholds can be interpreted as correlations of 0.7 and 0.9, 

respectively. 

Note that for     
     similar percentages of proteins reached a 0.5 threshold, but percentages 

decreased for larger thresholds (34% to 49%, for scores of 0.8). Notably, similar behaviour 

patterns persisted for all prediction models and all three human datasets. 

A possible explanation for this is that for different tissues or cell lines the highest prediction 

accuracy is achieved on the different set of genes. Figure 3 shows the relationship between the 

density of relative variability of protein concentrations among tissues (SD divided by the mean 

protein abundance values) and the prediction accuracy         for the Tissue29 dataset. 
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Figure 3. Representation of the relationship between variability of protein concentrations among tissues 

(SD divided by the mean value) and the prediction accuracy         (3a), and between prediction 

accuracy and protein abundance (3b). 

A modest trend could be observed in the results: better predictions were obtained for proteins 

with larger abundance variability between different tissues. A possible explanation is that the 

concentrations of such proteins are more affected by the levels of RNA expression and the 

accuracy of the experimental quantification. The figure also shows that better predictions were 

obtained for proteins with lower abundances. Overall, our results show that the abundances of 

proteins not measured experimentally can be predicted in silico from gene annotations and RNA 

expression values of the respective genes. 

3.2 Predictive value of specific annotation terms 
Since protein abundance prediction accuracy improved with GO and KW functional annotations, 

we conclude that this context information plays a role in the estimation. Therefore, we explored 

if there are particular sub-categories of genes that can be predicted with greater accuracy than 

others. Focussing on the Tissue29 dataset we examined this in two ways. Firstly, the average 

correlation for each functional GO or KW category was calculated by comparing the values of 

each gene across the tissues between the original experimental protein abundances and the 

predicted values. Secondly, the mean absolute percentage error (MAPE) of the predicted versus 

experimental protein expression was calculated for all genes in each functional category. Figure 

4 shows the GO and KW terms ranked by correlation and MAPE. A wide range in the correlation 

scores and MAPE values between functional terms were found. The full table of annotational 

terms and their average correlation and MAPE can be found in the Supporting Information. The 

best correlating terms mostly relate to metabolism and high turn-over proteins, which are 

strongly regulated at the transcriptional level. The poorest correlating terms contained proteins 

which are known to be difficult to experimentally quantify using MS, such as transmembrane 

proteins. This finding followed the general pattern observed in previous comparisons between 

the proteome and the transcriptome.[9][10][11] 

We also found some evidence that some high abundance errors and poor correlation values 

found could in part be attributed to the accuracy of the experimental protein detection and 

quantification. An interesting example is the “Olfaction” term (GO:0004984). These proteins 

(olfactory receptors, which are present in olfactory receptor neurons and are responsible for 

the sense of smell) are notoriously difficult to detect and due to their well-known tissue 

specificity, it is highly likely that these represent experimental false positive identifications 

rather than poor predictions.[24] When more stringent peptide confidence measures were 

applied, as it was the case in the original analysis of this dataset, these proteins were removed 

from the dataset. The high error rate can be attributed to the fact that the predicted abundance 

is very low (less than 0.1, suggesting the protein is not present in these tissues) whereas the 

experimental values were significantly higher and probably incorrect. Another category of 

proteins showing poor correlation are serum proteins, which suggests contamination by blood 

in some experimental tissues. 
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Figure 4. Comparison of the predictive accuracy within the different functional annotation categories. For 

this analysis the average Pearson's correlation value between the predicted and observed protein 

abundances across the 29 human tissues in the Tissue29 dataset was computed. The 4a plot displays 

functional annotation terms ranked by their average gene correlation across the tissues. The 4b plot 

displays the MAPE values for each term. The terms were filtered to only include those ones containing at 

least 5 identified proteins that had values for at least 25% of the tissues. The 10 best and worst terms in 

the two analyses (with a minimum of 30 genes represented by the term) are shown on each plot. 

3.3 Model transferability to mouse 
Next our aim was to test whether the models were transferable from human to a different 

species. In the case of the mouse dataset MouseTissue3, four DL models were tested. The results 

are summarised in Table 2 and Figure 5. The results were similar to those found in human data 

with      
       for the RNA+GO model in comparison to a 0.3 value obtained for the LR 
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model. The percentages of genes predictable with scores above 0.5 and 0.8 were 70% and 50%, 

respectively (62% and 40% for LR). Nevertheless, predictions arising from GO annotations only 

gave results similar to LR, which could be explained by the sparser GO annotations available for 

mouse. 

Model     
      

       
       

  

LR 0.208 0.385 0.304 0.306 

GO 0.194 0.337 0.262 0.264 

RNA+GO 0.338 0.546 0.450 0.451 

HM_RNA+KW 0.415 0.551 0.475 0.473 

HM_RNA+GO 0.424 0.548 0.494 0.492 

HM_RNA+GO+KW 0.445 0.577 0.515 0.513 

Table 2. The minimal, maximal and average prediction accuracy for mouse datasets coming from mouse 

gene expression values and/or GO annotations, and from the coefficients assigned to mouse genes by 

training DL prediction models on the human Tissue29 dataset. 

            
     

 

  

Figure 5. Percentages of mouse genes (on the y axes) that can be predicted above    thresholds (on the x 

axes) within the range           using         and     
     scores. Data are shown for four prediction 

models as well as for the HM_RNA+GO+KW ‘model’, which applied coefficients computed from the human 

Tissue29 dataset to predict abundance of homologous mouse proteins on the basis of RNA expression 

data alone. 
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We used the      and       coefficients assigned to genes by DL network trained on human 

data (specifically, for the human Tissue29 dataset for two tissues – liver and testis) and applied 

these to homologous genes in mouse tissues. Such homologues were available for 5,388 of 6,591 

mouse genes measured in the MouseTissue3 dataset. 

Unexpectedly, we observed that the coefficient computed by the RNA+GO model trained on 

human data provided better predictions than the same model trained on the mouse dataset, 

indicating that models derived from larger sets with more comprehensive GO annotations 

appear to be applicable to homologous genes. No-tissue specificity of the gene specific 

coefficients was observed. The best predictions were obtained from coefficients computed by 

the DL network without including tissue information. In principle this is consistent with 

observations from related work were such coefficients were assigned directly from the 

measurements.[25][26] However, given that we used data from only two common tissues, this 

does not allow us to reach reliable conclusions. Tissue-specificity of expression of some genes 

has been used to derive marker sets.[27] The challenge now is how such tissue-related 

information can be extracted from available gene annotation data. 

4 Discussion 

Deep learning approaches have recently been applied to predict gene expression levels in a 

different context,[28] nevertheless to the best of our knowledge existing approaches for protein 

abundance prediction focus on imputing partially missing values or as is the case with the NCI-

CPTAC DREAM proteogenomics challenge, to infer proteomes in new samples from genomics 

datasets. Our method is aimed at extrapolating the measured experimental values to 

unobserved proteins (Figure 1). One previous protein abundance prediction approach used 

linear regression applied to RNA levels measured for 512 genes in Daoy medulloblastoma 

cells.[29] The authors reported accuracy        . A higher prediction accuracy         was 

reported in a dataset of 5,279 genes in the NIH3T3 mouse fibroblast cell line.[30] The predictions 

here were based on gene-specific coefficients that were assigned based on measurements of 

translation and degradation rates at three different timepoints. The authors also reported that 

these rates were similar for homologous genes, which is consistent with our observation that 

models trained on human data can be applied to homologous mouse genes. In comparison, the 

   values that we obtained using the RNA+GO+KW model for all the 4 datasets exceeded the 

reported        , moreover our assignment of gene specific coefficients are obtained purely 

in silico from GO and KW annotations rather than from custom-designed lab experiments. 

Another study involving 9 human cell lines and 11 tissues,[25] assigned gene-specific coefficients 

based on RNA-to-protein conversion rates. This approach achieved a high prediction accuracy 

   of up to 0.8, but only for a small set of 55 “hand-picked” genes. In such cases of tailored small 

sets, higher accuracy should be expected.  

Recently an NCI-CPTAC DREAM proteogenomics challenge has focussed on the prediction of 

protein expression levels across samples from cancer patients, using genomics data combined 

with protein annotational information.[12][13] Various predictive linear and non-linear models 

were evaluated using isobaric labelled (iTRAQ) proteomics and RNAseq datasets generated by 
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CPTAC. These models attempt to infer protein expression samples based on the transcript 

abundances supplemented with protein features such as interactions and conservation 

attributes. Of the various approaches they examined the best method was an ensemble 

approach using a random forest algorithm and achieving an R score of 0.53, which is 

comparable to what we achieve for the prediction of unobserved proteins.[13] 

As noted, our approach is aimed at extrapolating label free global protein expression values to 

the full proteome including the experimentally unobserved proteins, and thus our results are 

not directly comparable with these existing methods.[31] Nevertheless, we can achieve the 

accuracy of    scores between 0.46 and 0.54. 

In our study we have solely applied our method to label free MS proteomics datasets that used 

MS1 intensity-based quantification (iBAQ). This particular type of experimental protein 

expression data was selected because currently it is the most widely used approach for protein 

expression data in public databases. We have opted to use datasets analysed using MaxQuant as 

it reflects a prominent workflow in label-free proteomics. Obviously, our predictions of the true 

protein abundances are only as good as the data for the experimentally measured proteins. 

There are a myriad of methods and tools for assessing the true protein abundance in proteomics 

experiments, however, there are limited ways to assess the accuracy of protein quantification 

on a large scale without using synthetic or purified protein standards. Although some 

benchmarking proteomics datasets have been generated, the complication for using them in our 

approach is that data are needed with proteins behaving in context of their biological 

annotations, and with a suitable paired RNAseq expression dataset. To the best of our 

knowledge such a benchmarking dataset does not yet exist. As it is essential for our method that 

meaningful protein annotations and complementary RNA expression data are available, the 

application of our method to peptide-level quantifications would be problematic. 

In theory, since the neural network is trained on each dataset independently, our method could 

potentially be extended to support other experimental methodologies for protein quantification 

such as labelled MS approaches and absolute quantification experiments. However, further 

testing and optimisation would likely be needed in these cases, which are beyond the scope of 

this study. 

In most applications of our method an independent model will be trained for each dataset for 

which values are to be predicted. However, we have examined the possibility of using a model 

trained on one dataset to predict values in a different experiment and demonstrated that our DL 

method provides a good predictive model across datasets, even across different species, such as 

human and mouse (exploiting gene homology mappings). In fact, training the DL on larger more 

comprehensive datasets and applying it to a smaller dataset can yield better accuracy in the 

prediction. For instance, the model trained on a larger human dataset transferred to mouse gave 

a better prediction of values than the model trained on a small mouse dataset. It has to be noted 

that the prediction accuracy varies between proteins, moreover, the particularly difficult-to-

predict proteins depended on the biological sample. Nevertheless, the prediction models were 

relatively stable across-datasets and a model learned from one dataset could be applied to 

predict unobserved proteins in another dataset. 
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It may seem surprising that GO or KW annotations are better predictors of the unobserved 

protein abundances than the RNA measurements. A possible explanation for this is that gene 

annotation terms provide links between proteins that have related functions, are parts of the 

same protein complexes, or are co-regulated and thus are present in similar samples in similar 

abundances. It is important to note however, that when combined with information coming 

from gene annotations, RNA measurements improved the predictions accuracy significantly. 

We have investigated the performance of the method for different protein subsets by looking at 

the correlation of predicted protein values to experimental protein values across tissues, taking 

the average correlation for each annotational term. Additionally, we calculated the average 

MAPE for proteins in each subset. These subsets of proteins showed a range of accuracies 

between the different functional annotational terms. There appear to be two factors driving the 

extremes in accuracy between terms. The best correlating and most accurately predicted 

proteins appear to include annotational terms, such as metabolism and immune response. Such 

proteins are known to be strongly regulated at the transcriptional level.[11] This is explained by 

the fact that the predictive power of the RNAseq values is at its best for these categories and is 

significantly boosting the prediction accuracy for these proteins. 

For the least accurate functional categories, there seems to be a different explanation. These 

terms generally reflect categories of proteins that would correlate very poorly with RNAseq 

values. These include tissue specific protein sets, potentially proteins coming from 

contaminations in the sample, or proteins that are difficult to detect by experimental MS 

approaches. Additionally, one key example we can note is olfaction related proteins, which are 

notoriously difficult to identify via MS and have very high tissue specificity. However, olfactory 

receptors have been identified in the datasets used here. These are highly likely to be false 

positives, especially since these identifications are not present in the original analyses of these 

experiments, where stricter peptide confidence filtering was applied. These proteins display 

very low accuracy between predicted and experimental values. In this sense the predicted 

expression is more realistic than the observed experimental values. This demonstrates the 

power of our method for identifying aberrant protein expression where some confounding 

factor, such as false positive identifications, variant proteins and protein modifications, are 

impacting the experimental quantification. Due to the nature of the predictive method we are 

applying, a protein will always be given a predicted expression value, and hence there will 

always be a background noise even if the protein is not biologically present in that sample. This 

is worth noting when the predictions are applied to truly unobserved proteins, a minimum 

predicted expression threshold should therefore be imposed. 

To test our predictions, we excluded 10% of the proteins in each round of training and then 

built 100 different models for each dataset and only looked at the predictive accuracy of 

proteins masked from the training set. This was done to enable the investigation of the accuracy 

of predicted proteins unobserved in all samples, extending the proteome coverage, based on the 

RNAseq and the functional annotational relationships to the rest of the proteomics experimental 

data. However, this approach is not suitable for examining the accuracy of the imputation for 

partially missing proteins. Although the model can be applied for this purpose, we have not 

explored this application here and can only hypothesize that performance would not necessarily 
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be better than existing approaches. To take full advantage of the deep learning methodology for 

imputation, further optimisation and testing would also be required. 

The fact that a model trained using the human data predicted mouse proteins better than using 

the model trained on the mouse model, demonstrates that the accuracy of the predictions can be 

improved by having a larger input dataset with more complete functional annotation. To assess 

the accuracies of any given model when applying the method to new datasets a similar cross 

validation strategy should be implemented, leaving a fraction of the data out of each model over 

multiple iterations. This should provide a good indication for the overall accuracy for 

unobserved proteins in any particular functional category. 

Given that our protein abundance measurement predictions are tested by masking a subset of 

the proteins that actually are measured experimentally, the question as to what extent our 

conclusions could be reliably transferred on the truly unobserved proteins can arise. Is it 

possible that the truly unobserved proteins have properties different from those of the 

measured ones and therefore our computational predictions are not reliable? This possibility is 

difficult to test directly, however the observation that our models can be transferred between 

datasets with different sets of proteins absent in different experiments provides indirect 

evidence that our predictions do apply to all proteins. We also highlight that in the assessment 

of the accuracy of annotations, the predicted values can actually be used to expose aberrant 

protein abundance values (i.e. in the case of the olfactory receptors) and situations where a false 

identification or quantification has occurred in the experimental data. 

In our computational study to train DL networks we specifically use GO or UniProt KW as 

contextual information, in principle our method allows for using any context information that 

can be associated with genes, for instance, protein sequence, domain features, and/ or KEGG 

pathways, among others. Taken together, this study demonstrates that our method can be used 

to estimate the abundance for proteins that are unobserved in label free MS experiments and to 

reveal instances where measurements may not be reliable. This provides greater coverage of 

pathways and protein networks for improved downstream analysis. Additionally, it can 

highlight unobserved or aberrantly expressed proteins with biological relevance that can be 

targeted in further experiments.  

 

5 Associated data 

The datasets used for the study are obtained from the following Expression Atlas datasets: 

Tissue13 from E-PROT-1 (coming from PRIDE datasets PXD000561 and PXD002967) and E-

MTAB-2836 (RNA expression); NCI60 from E-PROT-25 (PRIDE dataset PXD005940) and E-

MTAB-2770 (RNA expression) Tissue29 from E-PROT-29 (PRIDE dataset PXD010154) and E-

MTAB-2836 (RNA expression); MouseTissue3 from E-PROT-13 and E-GEOD-43721 (RNA 

expression). Pre-processed datasets and the developed software are available at GitHub: 

https://github.com/IMCS-Bioinformatics/DLNetworkForProteinAbundancePrediction. More 

details about datasets and software are provided in Supporting Information. 

https://github.com/IMCS-Bioinformatics/DLNetworkForProteinAbundancePrediction
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