Show simple item record

dc.contributor.authorKaserer, T
dc.contributor.authorBlagg, J
dc.date.accessioned2018-09-17T09:15:13Z
dc.date.issued2018-11-15
dc.identifier.citationCell chemical biology, 2018, 25 (11), pp. 1359 - 1371.e2
dc.identifier.issn2451-9456
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/2693
dc.identifier.eissn2451-9448
dc.identifier.doi10.1016/j.chembiol.2018.07.013
dc.description.abstractThe emergence of mutations that confer resistance to molecularly targeted therapeutics is dependent upon the effect of each mutation on drug affinity for the target protein, the clonal fitness of cells harboring the mutation, and the probability that each variant can be generated by DNA codon base mutation. We present a computational workflow that combines these three factors to identify mutations likely to arise upon drug treatment in a particular tumor type. The Osprey-based workflow is validated using a comprehensive dataset of ERK2 mutations and is applied to small-molecule drugs and/or therapeutic antibodies targeting KIT, EGFR, Abl, and ALK. We identify major clinically observed drug-resistant mutations for drug-target pairs and highlight the potential to prospectively identify probable drug resistance mutations.
dc.formatPrint-Electronic
dc.format.extent1359 - 1371.e2
dc.languageeng
dc.language.isoeng
dc.publisherCELL PRESS
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectHumans
dc.subjectNeoplasms
dc.subjectMitogen-Activated Protein Kinase 1
dc.subjectAntineoplastic Agents
dc.subjectDNA Mutational Analysis
dc.subjectDrug Resistance, Neoplasm
dc.subjectMutation
dc.subjectModels, Molecular
dc.subjectSoftware
dc.subjectSmall Molecule Libraries
dc.subjectWorkflow
dc.subjectMolecular Targeted Therapy
dc.titleCombining Mutational Signatures, Clonal Fitness, and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer.
dc.typeJournal Article
dcterms.dateAccepted2018-07-26
rioxxterms.versionofrecord10.1016/j.chembiol.2018.07.013
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2018-11
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfCell chemical biology
pubs.issue11
pubs.notesNo embargo
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/In Silico Medicinal Chemistry
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Medicinal Chemistry 1
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/In Silico Medicinal Chemistry
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Medicinal Chemistry 1
pubs.publication-statusPublished
pubs.volume25
pubs.embargo.termsNo embargo
pubs.oa-locationhttps://www.sciencedirect.com/science/article/pii/S2451945618302654?via=ihub
icr.researchteamIn Silico Medicinal Chemistry
icr.researchteamMedicinal Chemistry 1
dc.contributor.icrauthorKaserer, Teresa


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0