Show simple item record

dc.contributor.authorSiskos, AP
dc.contributor.authorJain, P
dc.contributor.authorRömisch-Margl, W
dc.contributor.authorBennett, M
dc.contributor.authorAchaintre, D
dc.contributor.authorAsad, Y
dc.contributor.authorMarney, L
dc.contributor.authorRichardson, L
dc.contributor.authorKoulman, A
dc.contributor.authorGriffin, JL
dc.contributor.authorRaynaud, F
dc.contributor.authorScalbert, A
dc.contributor.authorAdamski, J
dc.contributor.authorPrehn, C
dc.contributor.authorKeun, HC
dc.date.accessioned2019-05-14T13:46:45Z
dc.date.issued2017-01-03
dc.identifier.citationAnalytical chemistry, 2017, 89 (1), pp. 656 - 665
dc.identifier.issn0003-2700
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3229
dc.identifier.eissn1520-6882
dc.identifier.doi10.1021/acs.analchem.6b02930
dc.description.abstractA critical question facing the field of metabolomics is whether data obtained from different centers can be effectively compared and combined. An important aspect of this is the interlaboratory precision (reproducibility) of the analytical protocols used. We analyzed human samples in six laboratories using different instrumentation but a common protocol (the AbsoluteIDQ p180 kit) for the measurement of 189 metabolites via liquid chromatography (LC) or flow injection analysis (FIA) coupled to tandem mass spectrometry (MS/MS). In spiked quality control (QC) samples 82% of metabolite measurements had an interlaboratory precision of <20%, while 83% of averaged individual laboratory measurements were accurate to within 20%. For 20 typical biological samples (serum and plasma from healthy individuals) the median interlaboratory coefficient of variation (CV) was 7.6%, with 85% of metabolites exhibiting a median interlaboratory CV of <20%. Precision was largely independent of the type of sample (serum or plasma) or the anticoagulant used but was reduced in a sample from a patient with dyslipidaemia. The median interlaboratory accuracy and precision of the assay for standard reference plasma (NIST SRM 1950) were 107% and 6.7%, respectively. Likely sources of irreproducibility were the near limit of detection (LOD) typical abundance of some metabolites and the degree of manual review and optimization of peak integration in the LC-MS/MS data after acquisition. Normalization to a reference material was crucial for the semi-quantitative FIA measurements. This is the first interlaboratory assessment of a widely used, targeted metabolomics assay illustrating the reproducibility of the protocol and how data generated on different instruments could be directly integrated in large-scale epidemiological studies.
dc.formatPrint-Electronic
dc.format.extent656 - 665
dc.languageeng
dc.language.isoeng
dc.publisherAMER CHEMICAL SOC
dc.rights.urihttps://www.rioxx.net/licenses/all-rights-reserved
dc.subjectHumans
dc.subjectReproducibility of Results
dc.subjectReference Standards
dc.subjectQuality Control
dc.subjectLaboratories
dc.subjectTandem Mass Spectrometry
dc.subjectMetabolomics
dc.subjectLimit of Detection
dc.titleInterlaboratory Reproducibility of a Targeted Metabolomics Platform for Analysis of Human Serum and Plasma.
dc.typeJournal Article
dcterms.dateAccepted2016-11-30
rioxxterms.versionofrecord10.1021/acs.analchem.6b02930
rioxxterms.licenseref.urihttps://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2017-01
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfAnalytical chemistry
pubs.issue1
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Clinical Pharmacology & Trials (including Drug Metabolism & Pharmacokinetics Group)
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Clinical Pharmacology & Trials (including Drug Metabolism & Pharmacokinetics Group)
pubs.publication-statusPublished
pubs.volume89
pubs.embargo.termsNot known
icr.researchteamClinical Pharmacology & Trials (including Drug Metabolism & Pharmacokinetics Group)
dc.contributor.icrauthorRaynaud, Florence


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record