Show simple item record

dc.contributor.authorKong, M
dc.contributor.authorCutts, EE
dc.contributor.authorPan, D
dc.contributor.authorBeuron, F
dc.contributor.authorKaliyappan, T
dc.contributor.authorXue, C
dc.contributor.authorMorris, EP
dc.contributor.authorMusacchio, A
dc.contributor.authorVannini, A
dc.contributor.authorGreene, EC
dc.date.accessioned2020-06-02T09:34:26Z
dc.date.issued2020-07-02
dc.identifier.citationMolecular cell, 2020, 79 (1), pp. 99 - 114.e9
dc.identifier.issn1097-2765
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3668
dc.identifier.eissn1097-4164
dc.identifier.doi10.1016/j.molcel.2020.04.026
dc.description.abstractStructural maintenance of chromosomes (SMC) complexes are essential for genome organization from bacteria to humans, but their mechanisms of action remain poorly understood. Here, we characterize human SMC complexes condensin I and II and unveil the architecture of the human condensin II complex, revealing two putative DNA-entrapment sites. Using single-molecule imaging, we demonstrate that both condensin I and II exhibit ATP-dependent motor activity and promote extensive and reversible compaction of double-stranded DNA. Nucleosomes are incorporated into DNA loops during compaction without being displaced from the DNA, indicating that condensin complexes can readily act upon nucleosome-bound DNA molecules. These observations shed light on critical processes involved in genome organization in human cells.
dc.formatPrint-Electronic
dc.format.extent99 - 114.e9
dc.languageeng
dc.language.isoeng
dc.publisherCELL PRESS
dc.rights.urihttps://www.rioxx.net/licenses/all-rights-reserved
dc.subjectNucleosomes
dc.subjectHumans
dc.subjectMultiprotein Complexes
dc.subjectDNA-Binding Proteins
dc.subjectDNA
dc.subjectAdenosine Triphosphate
dc.subjectProtein Conformation
dc.subjectProtein Binding
dc.subjectModels, Molecular
dc.subjectAdenosine Triphosphatases
dc.subjectSingle Molecule Imaging
dc.titleHuman Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA.
dc.typeJournal Article
dcterms.dateAccepted2020-04-22
rioxxterms.versionofrecord10.1016/j.molcel.2020.04.026
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2020-07
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfMolecular cell
pubs.issue1
pubs.notesNo embargo
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology/Structural Electron Microscopy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology/Vannini Group
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology/Structural Electron Microscopy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology/Vannini Group
pubs.publication-statusPublished
pubs.volume79
pubs.embargo.termsNo embargo
icr.researchteamStructural Electron Microscopy
icr.researchteamVannini Group
dc.contributor.icrauthorBeuron, Fabienne
dc.contributor.icrauthorMorris, Edward
dc.contributor.icrauthorVannini, Alessandro


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record