Show simple item record

dc.contributor.authorParr, H
dc.contributor.authorHall, E
dc.contributor.authorPorta, N
dc.identifier.citationBMC Medical Research Methodology,
dc.description.abstractBACKGROUND: Prostate cancer is a very prevalent disease in men. Patients are monitored regularly during and after treatment with repeated assessment of prostate-specific antigen (PSA) levels. Prognosis of localised prostate cancer is generally good after treatment, and the risk of having a recurrence is usually estimated based on factors measured at diagnosis. Incorporating PSA measurements over time in a dynamic prediction joint model enables updates of patients' risk as new information becomes available. We review joint model strategies that have been applied to model time-dependent PSA trajectories to predict time-to-event outcomes in localised prostate cancer. METHODS: We identify articles that developed joint models for prediction of localised prostate cancer recurrence over the last two decades. We report, compare, and summarise the methodological approaches and applications that use joint modelling accounting for two processes: the longitudinal model (PSA), and the time-to-event process (clinical failure). The methods explored differ in how they specify the association between these two processes. RESULTS: Twelve relevant articles were identified. A range of methodological frameworks were found, and we describe in detail shared-parameter joint models (9 of 12, 75%) and joint latent class models (3 of 12, 25%). Within each framework, these articles presented model development, estimation of dynamic predictions and model validations. CONCLUSIONS: Each framework has its unique principles with corresponding advantages and differing interpretations. Regardless of the framework used, dynamic prediction models enable real-time prediction of individual patient prognosis. They utilise all available longitudinal information, in addition to baseline prognostic risk factors, and are superior to traditional baseline-only prediction models.
dc.relation.ispartofBMC Medical Research Methodology
dc.titleJoint models for dynamic prediction in localised prostate cancer: a literature review.
dc.typeJournal Article
rioxxterms.typeJournal Article/Review
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Clinical Studies
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Clinical Studies/Clinical Trials & Statistics Unit
icr.researchteamClin Trials & Stats Unit
dc.contributor.icrauthorParr, Harry
dc.contributor.icrauthorHall, Emma
dc.contributor.icrauthorPorta, Nuria
icr.provenanceDeposited by Ms Sara Quirk (impersonating Prof Emma Hall) on 2022-08-16. Deposit type is initial. No. of files: 1. Files: ReviewArticle_AUG_22_FINAL_v2.pdf

Files in this item


This item appears in the following collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as