Show simple item record

dc.contributor.authorHu, Y-H
dc.contributor.authorRottmann, J
dc.contributor.authorFueglistaller, R
dc.contributor.authorMyronakis, M
dc.contributor.authorWang, A
dc.contributor.authorHuber, P
dc.contributor.authorShedlock, D
dc.contributor.authorMorf, D
dc.contributor.authorBaturin, P
dc.contributor.authorStar-Lack, J
dc.contributor.authorBerbeco, R
dc.date.accessioned2019-02-26T14:22:44Z
dc.date.issued2018-01-30
dc.identifier.citationPhysics in medicine and biology, 2018, 63 (3), pp. 035022 - ?
dc.identifier.issn0031-9155
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3099
dc.identifier.eissn1361-6560
dc.identifier.doi10.1088/1361-6560/aaa160
dc.description.abstractWhile megavoltage cone-beam computed tomography (CBCT) using an electronic portal imaging device (EPID) provides many advantages over kilovoltage (kV) CBCT, clinical adoption is limited by its high doses. Multi-layer imager (MLI) EPIDs increase DQE(0) while maintaining high resolution. However, even well-designed, high-performance MLIs suffer from increased electronic noise from each readout, degrading low-dose image quality. To improve low-dose performance, shift-and-bin addition (ShiBA) imaging is proposed, leveraging the unique architecture of the MLI. ShiBA combines hardware readout-binning and super-resolution concepts, reducing electronic noise while maintaining native image sampling. The imaging performance of full-resolution (FR); standard, aligned binned (BIN); and ShiBA images in terms of noise power spectrum (NPS), electronic NPS, modulation transfer function (MTF), and the ideal observer signal-to-noise ratio (SNR)-the detectability index (d')-are compared. The FR 4-layer readout of the prototype MLI exhibits an electronic NPS magnitude 6-times higher than a state-of-the-art single layer (SLI) EPID. Although the MLI is built on the same readout platform as the SLI, with each layer exhibiting equivalent electronic noise, the multi-stage readout of the MLI results in electronic noise 50% higher than simple summation. Electronic noise is mitigated in both BIN and ShiBA imaging, reducing its total by ~12 times. ShiBA further reduces the NPS, effectively upsampling the image, resulting in a multiplication by a sinc2 function. Normalized NPS show that neither ShiBA nor BIN otherwise affects image noise. The LSF shows that ShiBA removes the pixilation artifact of BIN images and mitigates the effect of detector shift, but does not quantifiably improve the MTF. ShiBA provides a pre-sampled representation of the images, mitigating phase dependence. Hardware binning strategies lower the quantum noise floor, with 2  ×  2 implementation reducing the dose at which DQE(0) degrades by 10% from 0.01 MU to 0.004 MU, representing 20% improvement in d'.
dc.formatElectronic
dc.format.extent035022 - ?
dc.languageeng
dc.language.isoeng
dc.publisherIOP PUBLISHING LTD
dc.rights.urihttps://www.rioxx.net/licenses/all-rights-reserved
dc.subjectHumans
dc.subjectRadiation Dosage
dc.subjectPhantoms, Imaging
dc.subjectCone-Beam Computed Tomography
dc.subjectMolecular Imaging
dc.subjectSignal-To-Noise Ratio
dc.titleLeveraging multi-layer imager detector design to improve low-dose performance for megavoltage cone-beam computed tomography.
dc.typeJournal Article
rioxxterms.versionofrecord10.1088/1361-6560/aaa160
rioxxterms.licenseref.urihttps://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-01-30
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfPhysics in medicine and biology
pubs.issue3
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Multimodality Molecular Imaging
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Multimodality Molecular Imaging
pubs.publication-statusPublished
pubs.volume63
pubs.embargo.termsNot known
icr.researchteamMultimodality Molecular Imaging
dc.contributor.icrauthorMyronakis, Marios


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record