Show simple item record

dc.contributor.authorBedford, JL
dc.contributor.authorNill, S
dc.contributor.authorOelfke, U
dc.date.accessioned2020-02-12T16:15:08Z
dc.date.issued2020-04-01
dc.identifier.citationMedical physics, 2020, 47 (4), pp. 1533 - 1544
dc.identifier.issn0094-2405
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3509
dc.identifier.eissn2473-4209
dc.identifier.doi10.1002/mp.14090
dc.description.abstractPURPOSE: Several studies have demonstrated potential improvements in treatment time through the use of dynamic arcs for delivery of stereotactic body radiation therapy (SBRT) on Cyberknife. However, the delivery system has a finite accuracy, so that potential exists for dosimetric uncertainties. This study estimates the expected dosimetric accuracy of dynamic delivery of SBRT, based on realistic estimates of the uncertainties in delivery parameters. METHODS: Five SBRT patient cases (prostate A - conventional, prostate B - brachytherapy-type, lung, liver, partial left breast) were retrospectively studied. Treatment plans were produced for a fixed arc trajectory using fluence optimization, segmentation, and direct aperture optimization. Dose rate uncertainty was modeled as a smoothly varying random fluctuation of ± 1.0%, ±2.0% or ± 5.0% over a time period of 10, 30 or 60 s. Multileaf collimator uncertainty was modeled as a lag in position of each leaf up to 0.25 or 0.5 mm. Robot pointing error was modeled as a shift of the target location, with the direction of the shift chosen as a random angle with respect to the multileaf collimator and with a random magnitude in the range 0.0-1.0 mm at the delivery nodes and with an additional random magnitude of 0.5-1.0 mm in between the delivery nodes. The impact of the errors was investigated using dose-volume histograms. RESULTS: Uncertainty in dose rate has the effect of varying the total monitor units delivered, which in turn produces a variation in mean dose to the planning target volume. The random sampling of dose rate error produces a distribution of mean doses with a standard deviation proportional to the magnitude of the dose rate uncertainty. A lag in multileaf collimator position of 0.25 or 0.5 mm produces a small impact on the delivered dose. In general, an increase in the PTV mean dose of around 1% is observed. An error in robot pointing of the order of 1 mm produces a small increase in dose inhomogeneity to the planning target volume, sometimes accompanied by an increase in mean dose by around 1%. CONCLUSIONS: Based upon the limited data available on the dose rate stability and geometric accuracy of the Cyberknife system, this study estimates that dynamic arc delivery can be accomplished with sufficient accuracy for clinical application. Dose rate variation produces a change in dose to the planning target volume according to the perturbation of total monitor units delivered, while multileaf collimator lag and robot pointing error typically increase the mean dose to the planning target volume by up to 1%.
dc.formatPrint-Electronic
dc.format.extent1533 - 1544
dc.languageeng
dc.language.isoeng
dc.publisherWILEY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleDosimetric accuracy of delivering SBRT using dynamic arcs on Cyberknife.
dc.typeJournal Article
dcterms.dateAccepted2020-02-06
rioxxterms.versionofrecord10.1002/mp.14090
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2020-04
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfMedical physics
pubs.issue4
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radiotherapy Physics Modelling
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radiotherapy treatment planning
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radiotherapy treatment planning/Radiotherapy treatment planning (hon.)
pubs.organisational-group/ICR/Primary Group/Royal Marsden Clinical Units
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radiotherapy Physics Modelling
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radiotherapy treatment planning
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radiotherapy treatment planning/Radiotherapy treatment planning (hon.)
pubs.organisational-group/ICR/Primary Group/Royal Marsden Clinical Units
pubs.publication-statusPublished
pubs.volume47
pubs.embargo.termsNot known
icr.researchteamRadiotherapy Physics Modelling
icr.researchteamRadiotherapy treatment planning
dc.contributor.icrauthorNill, Simeon


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0