Show simple item record

dc.contributor.authorHussain, SA
dc.contributor.authorPalmer, DH
dc.contributor.authorSyn, W-K
dc.contributor.authorSacco, JJ
dc.contributor.authorGreensmith, RMD
dc.contributor.authorElmetwali, T
dc.contributor.authorAachi, V
dc.contributor.authorLloyd, BH
dc.contributor.authorJithesh, PV
dc.contributor.authorArrand, J
dc.contributor.authorBarton, D
dc.contributor.authorAnsari, J
dc.contributor.authorSibson, DR
dc.contributor.authorJames, ND
dc.date.accessioned2020-08-24T10:05:03Z
dc.date.issued2017-04-01
dc.identifier.citationInternational Journal of Oncology, 2017, 50 (4), pp. 1147 - 1159
dc.identifier.issn1019-6439
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3998
dc.identifier.eissn1791-2423
dc.identifier.doi10.3892/ijo.2017.3893
dc.description.abstractDespite advances in management, bladder cancer remains a major cause of cancer related complications. Characterisation of gene expression patterns in bladder cancer allows the identification of pathways involved in its pathogenesis, and may stimulate the development of novel therapies targeting these pathways. Between 2004 and 2005, cystoscopic bladder biopsies were obtained from 19 patients and 11 controls. These were subjected to whole transcript-based microarray analysis. Unsupervised hierarchical clustering was used to identify samples with similar expression profiles. Hypergeometric analysis was used to identify canonical pathways and curated networks having statistically significant enrichment of differentially expressed genes. Osteopontin (OPN) expression was validated by immunohistochemistry. Hierarchical clustering defined signatures, which differentiated between cancer and healthy tissue, muscle-invasive or non-muscle invasive cancer and healthy tissue, grade 1 and grade 3. Pathways associated with cell cycle and proliferation were markedly upregulated in muscle-invasive and grade 3 cancers. Genes associated with the classical complement pathway were downregulated in non-muscle invasive cancer. Osteopontin was markedly overexpressed in invasive cancer compared to healthy tissue. The present study contributes to a growing body of work on gene expression signatures in bladder cancer. The data support an important role for osteopontin in bladder cancer, and identify several pathways worthy of further investigation.
dc.format.extent1147 - 1159
dc.languageeng
dc.language.isoeng
dc.publisherSPANDIDOS PUBL LTD
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleGene expression profiling in bladder cancer identifies potential therapeutic targets.
dc.typeJournal Article
rioxxterms.versionofrecord10.3892/ijo.2017.3893
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2017-04
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfInternational Journal of Oncology
pubs.issue4
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Prostate and Bladder Cancer Research
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Prostate and Bladder Cancer Research
pubs.publication-statusPublished
pubs.volume50
pubs.embargo.termsNot known
icr.researchteamProstate and Bladder Cancer Research
dc.contributor.icrauthorJames, Nicholas


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0