Show simple item record

dc.contributor.authorWalker, MD
dc.contributor.authorGear, JI
dc.contributor.authorCraig, AJ
dc.contributor.authorMcGowan, DR
dc.date.accessioned2022-04-01T11:01:59Z
dc.date.available2022-04-01T11:01:59Z
dc.date.issued2022-01-14
dc.identifier.citationDiagnostics (Basel, Switzerland), 2022, 12 (1)en_US
dc.identifier.issn2075-4418
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/5060
dc.identifier.eissn2075-4418en_US
dc.identifier.eissn2075-4418
dc.identifier.doi10.3390/diagnostics12010194en_US
dc.identifier.doi10.3390/diagnostics12010194
dc.description.abstractRespiratory motion degrades the quantification accuracy of PET imaging by blurring the radioactivity distribution. In the case of post-SIRT PET-CT verification imaging, respiratory motion can lead to inaccuracies in dosimetric measures. Using an anthropomorphic phantom filled with <sup>90</sup>Y at a range of clinically relevant activities, together with a respiratory motion platform performing realistic motions (10-15 mm amplitude), we assessed the impact of respiratory motion on PET-derived post-SIRT dosimetry. Two PET scanners at two sites were included in the assessment. The phantom experiments showed that device-driven quiescent period respiratory motion correction improved the accuracy of the quantification with statistically significant increases in both the mean contrast recovery (+5%, <i>p</i> = 0.003) and the threshold activities corresponding to the dose to 80% of the volume of interest (+6%, <i>p</i> < 0.001). Although quiescent period gating also reduces the number of counts and hence increases the noise in the PET image, its use is encouraged where accurate quantification of the above metrics is desired.en_US
dc.formatElectronicen_US
dc.languageengen_US
dc.language.isoengen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.titleEffects of Respiratory Motion on Y-90 PET Dosimetry for SIRT.en_US
dc.typeJournal Article
dcterms.dateAccepted2022-01-10
rioxxterms.versionVoRen_US
rioxxterms.versionofrecord10.3390/diagnostics12010194en_US
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0en_US
rioxxterms.licenseref.startdate2022-01-14
dc.relation.isPartOfDiagnostics (Basel, Switzerland)en_US
pubs.issue1en_US
pubs.notesNot knownen_US
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radioisotope Physics
pubs.organisational-group/ICR/Students
pubs.organisational-group/ICR/Students/PhD and MPhil
pubs.organisational-group/ICR/Students/PhD and MPhil/14/15 Starting Cohort
pubs.publication-statusPublisheden_US
pubs.volume12en_US
pubs.embargo.termsNot knownen_US
icr.researchteamRadioisotope Physics
dc.contributor.icrauthorCraig, Allisonen_US


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/