Show simple item record

dc.contributor.authorGear, JIen_US
dc.contributor.authorCummings, Cen_US
dc.contributor.authorCraig, AJen_US
dc.contributor.authorDivoli, Aen_US
dc.contributor.authorLong, CDCen_US
dc.contributor.authorTapner, Men_US
dc.contributor.authorFlux, GDen_US
dc.date.accessioned2016-08-18T10:40:00Z
dc.date.issued2016-12en_US
dc.identifier.citationEJNMMI physics, 2016, 3 (1), pp. 17 - ?en_US
dc.identifier.issn2197-7364en_US
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/67
dc.identifier.eissn2197-7364en_US
dc.identifier.doi10.1186/s40658-016-0151-6en_US
dc.description.abstractThe use of selective internal radiation therapy (SIRT) is rapidly increasing, and the need for quantification and dosimetry is becoming more widespread to facilitate treatment planning and verification. The aim of this project was to develop an anthropomorphic phantom that can be used as a validation tool for post-SIRT imaging and its application to dosimetry.The phantom design was based on anatomical data obtained from a T1-weighted volume-interpolated breath-hold examination (VIBE) on a Siemens Aera 1.5 T MRI scanner. The liver, lungs and abdominal trunk were segmented using the Hermes image processing workstation. Organ volumes were then uploaded to the Delft Visualization and Image processing Development Environment for smoothing and surface rendering. Triangular meshes defining the iso-surfaces were saved as stereo lithography (STL) files and imported into the Autodesk® Meshmixer software. Organ volumes were subtracted from the abdomen and a removable base designed to allow access to the liver cavity. Connection points for placing lesion inserts and filling holes were also included. The phantom was manufactured using a Stratasys Connex3 PolyJet 3D printer. The printer uses stereolithography technology combined with ink jet printing. Print material is a solid acrylic plastic, with similar properties to polymethylmethacrylate (PMMA).Measured Hounsfield units and calculated attenuation coefficients of the material were shown to also be similar to PMMA. Total print time for the phantom was approximately 5 days. Initial scans of the phantom have been performed with Y-90 bremsstrahlung SPECT/CT, Y-90 PET/CT and Tc-99m SPECT/CT. The CT component of these images compared well with the original anatomical reference, and measurements of volume agreed to within 9 %. Quantitative analysis of the phantom was performed using all three imaging techniques. Lesion and normal liver absorbed doses were calculated from the quantitative images in three dimensions using the local deposition method.3D printing is a flexible and cost-efficient technology for manufacture of anthropomorphic phantom. Application of such phantoms will enable quantitative imaging and dosimetry methodologies to be evaluated, which with optimisation could help improve outcome for patients.en_US
dc.formatPrint-Electronicen_US
dc.format.extent17 - ?en_US
dc.languageengen_US
dc.language.isoengen_US
dc.titleAbdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT.en_US
dc.typeJournal Article
dcterms.dateAccepted2016-07-26en_US
rioxxterms.versionofrecord10.1186/s40658-016-0151-6en_US
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0en_US
rioxxterms.licenseref.startdate2016-12en_US
rioxxterms.typeJournal Article/Reviewen_US
dc.relation.isPartOfEJNMMI physicsen_US
pubs.issue1en_US
pubs.notesNo embargoen_US
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radioisotope Physics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radioisotope Physics/Radioisotope Physics (hon.)
pubs.publication-statusPublisheden_US
pubs.volume3en_US
pubs.embargo.termsNo embargoen_US
icr.researchteamRadioisotope Physicsen_US
dc.contributor.icrauthorFlux, Glennen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record