Show simple item record

dc.contributor.authorHerrero, A
dc.contributor.authorReis-Cardoso, M
dc.contributor.authorJiménez-Gómez, I
dc.contributor.authorDoherty, C
dc.contributor.authorAgudo-Ibañez, L
dc.contributor.authorPinto, A
dc.contributor.authorCalvo, F
dc.contributor.authorKolch, W
dc.contributor.authorCrespo, P
dc.contributor.authorMatallanas, D
dc.date.accessioned2018-02-15T14:14:57Z
dc.date.issued2020-09
dc.identifier.citationSmall GTPases, 2020, 11 (5), pp. 371 - 383
dc.identifier.issn2154-1248
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/1119
dc.identifier.eissn2154-1256
dc.identifier.doi10.1080/21541248.2017.1406434
dc.description.abstractRas GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.
dc.formatPrint-Electronic
dc.format.extent371 - 383
dc.languageeng
dc.language.isoeng
dc.rights.urihttps://www.rioxx.net/licenses/under-embargo-all-rights-reserved
dc.titleCharacterisation of HRas local signal transduction networks using engineered site-specific exchange factors.
dc.typeJournal Article
rioxxterms.versionofrecord10.1080/21541248.2017.1406434
rioxxterms.licenseref.urihttps://www.rioxx.net/licenses/under-embargo-all-rights-reserved
rioxxterms.licenseref.startdate2020-09
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfSmall GTPases
pubs.declined2018-02-15T14:07:24.474+0000
pubs.issue5
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Closed research teams
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Closed research teams/Tumour Microenvironment
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Closed research teams
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Closed research teams/Tumour Microenvironment
pubs.publication-statusPublished
pubs.volume11
pubs.embargo.termsNot known
icr.researchteamTumour Microenvironmenten_US
dc.contributor.icrauthorCalvo, Fernando


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record