Show simple item record

dc.contributor.authorNoordermeer, SM
dc.contributor.authorAdam, S
dc.contributor.authorSetiaputra, D
dc.contributor.authorBarazas, M
dc.contributor.authorPettitt, SJ
dc.contributor.authorLing, AK
dc.contributor.authorOlivieri, M
dc.contributor.authorÁlvarez-Quilón, A
dc.contributor.authorMoatti, N
dc.contributor.authorZimmermann, M
dc.contributor.authorAnnunziato, S
dc.contributor.authorKrastev, DB
dc.contributor.authorSong, F
dc.contributor.authorBrandsma, I
dc.contributor.authorFrankum, J
dc.contributor.authorBrough, R
dc.contributor.authorSherker, A
dc.contributor.authorLandry, S
dc.contributor.authorSzilard, RK
dc.contributor.authorMunro, MM
dc.contributor.authorMcEwan, A
dc.contributor.authorGoullet de Rugy, T
dc.contributor.authorLin, Z-Y
dc.contributor.authorHart, T
dc.contributor.authorMoffat, J
dc.contributor.authorGingras, A-C
dc.contributor.authorMartin, A
dc.contributor.authorvan Attikum, H
dc.contributor.authorJonkers, J
dc.contributor.authorLord, CJ
dc.contributor.authorRottenberg, S
dc.contributor.authorDurocher, D
dc.date.accessioned2018-07-25T09:23:06Z
dc.date.issued2018-08
dc.identifier.citationNature, 2018, 560 (7716), pp. 117 - 121
dc.identifier.issn0028-0836
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/2125
dc.identifier.eissn1476-4687
dc.identifier.doi10.1038/s41586-018-0340-7
dc.description.abstract53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini 1,2 . This function of 53BP1 requires interactions with PTIP 3 and RIF1 4-9 , the latter of which recruits REV7 (also known as MAD2L2) to break sites 10,11 . How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases 12,13 , and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.
dc.formatPrint-Electronic
dc.format.extent117 - 121
dc.languageeng
dc.language.isoeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectCell Line
dc.subjectAnimals
dc.subjectHumans
dc.subjectMice
dc.subjectMultiprotein Complexes
dc.subjectTelomere-Binding Proteins
dc.subjectDNA, Single-Stranded
dc.subjectImmunoglobulin Class Switching
dc.subjectDNA Repair
dc.subjectGenes, BRCA1
dc.subjectModels, Biological
dc.subjectFemale
dc.subjectTumor Suppressor Protein p53
dc.subjectDNA Breaks, Double-Stranded
dc.subjectCRISPR-Cas Systems
dc.subjectPoly(ADP-ribose) Polymerase Inhibitors
dc.subjectTumor Suppressor p53-Binding Protein 1
dc.titleThe shieldin complex mediates 53BP1-dependent DNA repair.
dc.typeJournal Article
dcterms.dateAccepted2018-05-15
rioxxterms.versionofrecord10.1038/s41586-018-0340-7
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2018-08
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfNature
pubs.issue7716
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Breast Cancer Research
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Breast Cancer Research/Gene Function
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Gene Function
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Breast Cancer Research
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Breast Cancer Research/Gene Function
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Gene Function
pubs.publication-statusPublished
pubs.volume560
pubs.embargo.termsNot known
icr.researchteamGene Functionen_US
dc.contributor.icrauthorSong, Feifeien
dc.contributor.icrauthorLord, Christopheren
dc.contributor.icrauthorPettitt, Stephenen
dc.contributor.icrauthorKrastev, Dragomiren


Files in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0