Show simple item record

dc.contributor.authorBenstead-Hume, G
dc.contributor.authorChen, X
dc.contributor.authorHopkins, SR
dc.contributor.authorLane, KA
dc.contributor.authorDowns, JA
dc.contributor.authorPearl, FMG
dc.date.accessioned2019-09-23T13:41:42Z
dc.date.issued2019-04-17
dc.identifier.citationPLoS computational biology, 2019, 15 (4), pp. e1006888 - ?
dc.identifier.issn1553-734X
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3362
dc.identifier.eissn1553-7358
dc.identifier.doi10.1371/journal.pcbi.1006888
dc.description.abstractIn response to a need for improved treatments, a number of promising novel targeted cancer therapies are being developed that exploit human synthetic lethal interactions. This is facilitating personalised medicine strategies in cancers where specific tumour suppressors have become inactivated. Mainly due to the constraints of the experimental procedures, relatively few human synthetic lethal interactions have been identified. Here we describe SLant (Synthetic Lethal analysis via Network topology), a computational systems approach to predicting human synthetic lethal interactions that works by identifying and exploiting conserved patterns in protein interaction network topology both within and across species. SLant out-performs previous attempts to classify human SSL interactions and experimental validation of the models predictions suggests it may provide useful guidance for future SSL screenings and ultimately aid targeted cancer therapy development.
dc.formatElectronic-eCollection
dc.format.extente1006888 - ?
dc.languageeng
dc.language.isoeng
dc.publisherPUBLIC LIBRARY SCIENCE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectAnimals
dc.subjectHumans
dc.subjectNeoplasms
dc.subjectTumor Suppressor Proteins
dc.subjectProtein Interaction Mapping
dc.subjectComputational Biology
dc.subjectGenes, Essential
dc.subjectMultigene Family
dc.subjectAlgorithms
dc.subjectModels, Biological
dc.subjectArtificial Intelligence
dc.subjectDrug Discovery
dc.subjectSynthetic Biology
dc.subjectMolecular Targeted Therapy
dc.subjectProtein Interaction Maps
dc.subjectGene Ontology
dc.subjectSynthetic Lethal Mutations
dc.titlePredicting synthetic lethal interactions using conserved patterns in protein interaction networks.
dc.typeJournal Article
dcterms.dateAccepted2019-02-18
rioxxterms.versionofrecord10.1371/journal.pcbi.1006888
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2019-04-17
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfPLoS computational biology
pubs.issue4
pubs.notesNo embargo
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology/Epigenetics and Genome Stability
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology/Epigenetics and Genome Stability
pubs.publication-statusPublished
pubs.volume15
pubs.embargo.termsNo embargo
icr.researchteamEpigenetics and Genome Stability
dc.contributor.icrauthorDowns, Jessica


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0