Show simple item record

dc.contributor.authorBoult, JKR
dc.contributor.authorBox, G
dc.contributor.authorVinci, M
dc.contributor.authorPerryman, L
dc.contributor.authorEccles, SA
dc.contributor.authorJones, C
dc.contributor.authorRobinson, SP
dc.date.accessioned2017-05-23T15:38:27Z
dc.date.issued2017-09-01
dc.identifier.citationNeoplasia (New York, N.Y.), 2017, 19 (9), pp. 684 - 694
dc.identifier.issn1522-8002
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/650
dc.identifier.eissn1476-5586
dc.identifier.doi10.1016/j.neo.2017.05.007
dc.description.abstractVascular endothelial growth factor A (VEGF-A) is considered one of the most important factors in tumor angiogenesis, and consequently, a number of therapeutics have been developed to inhibit VEGF signaling. Therapeutic strategies to target brain malignancies, both primary brain tumors, particularly in pediatric patients, and metastases, are lacking, but targeting angiogenesis may be a promising approach. Multiparametric MRI was used to investigate the response of orthotopic SF188luc pediatric glioblastoma xenografts to small molecule pan-VEGFR inhibitor cediranib and the effects of both cediranib and cross-reactive human/mouse anti-VEGF-A antibody B20-4.1.1 in intracranial MDA-MB-231 LM2-4 breast cancer xenografts over 48 hours. All therapeutic regimens resulted in significant tumor growth delay. In cediranib-treated SF188luc tumors, this was associated with lower Ktrans (compound biomarker of perfusion and vascular permeability) than in vehicle-treated controls. Cediranib also induced significant reductions in both Ktrans and apparent diffusion coefficient (ADC) in MDA-MB-231 LM2-4 tumors associated with decreased histologically assessed perfusion. B20-4.1.1 treatment resulted in decreased Ktrans, but in the absence of a change in perfusion; a non-significant reduction in vascular permeability, assessed by Evans blue extravasation, was observed in treated tumors. The imaging responses of intracranial MDA-MB-231 LM2-4 tumors to VEGF/VEGFR pathway inhibitors with differing mechanisms of action are subtly different. We show that VEGF pathway blockade resulted in tumor growth retardation and inhibition of tumor vasculature in preclinical models of pediatric glioblastoma and breast cancer brain metastases, suggesting that multiparametric MRI can provide a powerful adjunct to accelerate the development of antiangiogenic therapies for use in these patient populations.
dc.formatPrint-Electronic
dc.format.extent684 - 694
dc.languageeng
dc.language.isoeng
dc.publisherELSEVIER SCIENCE INC
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectCell Line, Tumor
dc.subjectAnimals
dc.subjectHumans
dc.subjectMice
dc.subjectBrain Neoplasms
dc.subjectDisease Models, Animal
dc.subjectNeovascularization, Pathologic
dc.subjectAngiogenesis Inhibitors
dc.subjectVascular Endothelial Growth Factor A
dc.subjectProtein Kinase Inhibitors
dc.subjectMagnetic Resonance Imaging
dc.subjectDiffusion Magnetic Resonance Imaging
dc.subjectImage Enhancement
dc.subjectTreatment Outcome
dc.subjectLuminescent Measurements
dc.subjectXenograft Model Antitumor Assays
dc.subjectSignal Transduction
dc.subjectMolecular Imaging
dc.subjectMolecular Targeted Therapy
dc.titleEvaluation of the Response of Intracranial Xenografts to VEGF Signaling Inhibition Using Multiparametric MRI.
dc.typeJournal Article
dcterms.dateAccepted2017-05-15
rioxxterms.versionofrecord10.1016/j.neo.2017.05.007
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
rioxxterms.licenseref.startdate2017-09
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfNeoplasia (New York, N.Y.)
pubs.issue9
pubs.notesNo embargo
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Glioma Team
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Glioma Team
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Pre-Clinical MRI
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Glioma Team
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Glioma Team
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Pre-Clinical MRI
pubs.publication-statusPublished
pubs.volume19
pubs.embargo.termsNo embargo
icr.researchteamGlioma Team
icr.researchteamPre-Clinical MRI
dc.contributor.icrauthorBoult, Jessica
dc.contributor.icrauthorJones, Chris
dc.contributor.icrauthorRobinson, Simon


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0