Show simple item record

dc.contributor.authorAgliano, A
dc.contributor.authorBalarajah, G
dc.contributor.authorCiobota, DM
dc.contributor.authorSidhu, J
dc.contributor.authorClarke, PA
dc.contributor.authorJones, C
dc.contributor.authorWorkman, P
dc.contributor.authorLeach, MO
dc.contributor.authorAl-Saffar, NMS
dc.date.accessioned2017-07-05T10:35:40Z
dc.date.issued2017-07-18
dc.identifier.citationOncotarget, 2017, 8 (29), pp. 47969 - 47983
dc.identifier.issn1949-2553
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/679
dc.identifier.eissn1949-2553
dc.identifier.doi10.18632/oncotarget.18206
dc.description.abstractPoor outcome for patients with glioblastomas is often associated with radioresistance. PI3K/mTOR pathway deregulation has been correlated with radioresistance; therefore, PI3K/mTOR inhibition could render tumors radiosensitive. In this study, we show that NVP-BEZ235, a dual PI3K/mTOR inhibitor, potentiates the effects of irradiation in both adult and pediatric glioblastoma cell lines, resulting in early metabolic changes detected by nuclear magnetic resonance (NMR) spectroscopy. NVP-BEZ235 radiosensitises cells to X ray exposure, inducing cell death through the inhibition of CDC25A and the activation of p21cip1(CDKN1A). Lactate and phosphocholine levels, increased with radiation, are decreased after NVP-BEZ235 and combination treatment, suggesting that inhibiting the PI3K/mTOR pathway reverses radiation induced metabolic changes. Importantly, NVP-BEZ235 potentiates the effects of irradiation in a xenograft model of adult glioblastoma, where we observed a decrease in lactate and phosphocholine levels after seven days of combination treatment. Although tumor size was not affected due to the short length of the treatment, a significant increase in CASP3 mRNA was observed in the combination group. Taken together, our data suggest that NMR metabolites could be used as biomarkers to detect an early response to combination therapy with PI3K/mTOR inhibitors and radiotherapy in adult and pediatric glioblastoma patients.
dc.formatPrint
dc.format.extent47969 - 47983
dc.languageeng
dc.language.isoeng
dc.publisherIMPACT JOURNALS LLC
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectCell Line, Tumor
dc.subjectAnimals
dc.subjectHumans
dc.subjectMice
dc.subjectGlioblastoma
dc.subjectCholine
dc.subjectImidazoles
dc.subjectQuinolines
dc.subjectGlucose
dc.subjectProtein Kinase Inhibitors
dc.subjectRadiation-Sensitizing Agents
dc.subjectMagnetic Resonance Spectroscopy
dc.subjectSignal Transduction
dc.subjectCell Survival
dc.subjectEnergy Metabolism
dc.subjectX-Rays
dc.subjectRadiation Tolerance
dc.subjectAdult
dc.subjectChild
dc.subjectFemale
dc.subjectMetabolomics
dc.subjectTOR Serine-Threonine Kinases
dc.subjectProton Magnetic Resonance Spectroscopy
dc.subjectBiomarkers
dc.subjectPhosphoinositide-3 Kinase Inhibitors
dc.titlePediatric and adult glioblastoma radiosensitization induced by PI3K/mTOR inhibition causes early metabolic alterations detected by nuclear magnetic resonance spectroscopy.
dc.typeJournal Article
dcterms.dateAccepted2017-04-29
rioxxterms.versionofrecord10.18632/oncotarget.18206
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2017-07
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfOncotarget
pubs.issue29
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Glioma Team
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Signal Transduction & Molecular Pharmacology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Glioma Team
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Magnetic Resonance
pubs.organisational-group/ICR/Primary Group/Royal Marsden Clinical Units
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Glioma Team
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Signal Transduction & Molecular Pharmacology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Glioma Team
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Magnetic Resonance
pubs.organisational-group/ICR/Primary Group/Royal Marsden Clinical Units
pubs.publication-statusPublished
pubs.volume8
pubs.embargo.termsNot known
icr.researchteamSignal Transduction & Molecular Pharmacology
icr.researchteamGlioma Team
icr.researchteamMagnetic Resonance
dc.contributor.icrauthorClarke, Paul
dc.contributor.icrauthorJones, Chris
dc.contributor.icrauthorWorkman, Paul
dc.contributor.icrauthorLeach, Martin
dc.contributor.icrauthorAl-Saffar, Nada


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0