Show simple item record

dc.contributor.authorBrody, LP
dc.contributor.authorSahuri-Arisoylu, M
dc.contributor.authorParkinson, JR
dc.contributor.authorParkes, HG
dc.contributor.authorSo, PW
dc.contributor.authorHajji, N
dc.contributor.authorThomas, EL
dc.contributor.authorFrost, GS
dc.contributor.authorMiller, AD
dc.contributor.authorBell, JD
dc.date.accessioned2017-10-03T14:25:12Z
dc.date.issued2017-01-01
dc.identifier.citationInternational journal of nanomedicine, 2017, 12 pp. 6677 - 6685
dc.identifier.issn1176-9114
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/846
dc.identifier.eissn1178-2013
dc.identifier.doi10.2147/ijn.s135968
dc.description.abstractMetabolic reengineering using nanoparticle delivery represents an innovative therapeutic approach to normalizing the deregulation of cellular metabolism underlying many diseases, including cancer. Here, we demonstrated a unique and novel application to the treatment of malignancy using a short-chain fatty acid (SCFA)-encapsulated lipid-based delivery system - liposome-encapsulated acetate nanoparticles for cancer applications (LITA-CAN). We assessed chronic in vivo administration of our nanoparticle in three separate murine models of colorectal cancer. We demonstrated a substantial reduction in tumor growth in the xenograft model of colorectal cancer cell lines HT-29, HCT-116 p53+/+ and HCT-116 p53-/-. Nanoparticle-induced reductions in histone deacetylase gene expression indicated a potential mechanism for these anti-proliferative effects. Together, these results indicated that LITA-CAN could be used as an effective direct or adjunct therapy to treat malignant transformation in vivo.
dc.formatElectronic-eCollection
dc.format.extent6677 - 6685
dc.languageeng
dc.language.isoeng
dc.publisherDOVE MEDICAL PRESS LTD
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectHCT116 Cells
dc.subjectHT29 Cells
dc.subjectAnimals
dc.subjectHumans
dc.subjectMice
dc.subjectColonic Neoplasms
dc.subjectCations
dc.subjectAcetates
dc.subjectHistone Deacetylases
dc.subjectLipids
dc.subjectAntineoplastic Agents
dc.subjectLiposomes
dc.subjectXenograft Model Antitumor Assays
dc.subjectNanoparticles
dc.titleCationic lipid-based nanoparticles mediate functional delivery of acetate to tumor cells in vivo leading to significant anticancer effects.
dc.typeJournal Article
rioxxterms.versionofrecord10.2147/ijn.s135968
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc/4.0
rioxxterms.licenseref.startdate2017-01
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfInternational journal of nanomedicine
pubs.notesNo embargo
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Magnetic Resonance
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Magnetic Resonance
pubs.publication-statusPublished
pubs.volume12
pubs.embargo.termsNo embargo
icr.researchteamMagnetic Resonance
dc.contributor.icrauthorParkes, Harold


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0