Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer.
Date
2018-10-25Author
Brough, R
Gulati, A
Haider, S
Kumar, R
Campbell, J
Knudsen, E
Pettitt, SJ
Ryan, CJ
Lord, CJ
Type
Journal Article
Metadata
Show full item recordAbstract
Although defects in the RB1 tumour suppressor are one of the more common driver alterations found in triple-negative breast cancer (TNBC), therapeutic approaches that exploit this have not been identified. By integrating molecular profiling data with data from multiple genetic perturbation screens, we identified candidate synthetic lethal (SL) interactions associated with RB1 defects in TNBC. We refined this analysis by identifying the highly penetrant effects, reasoning that these would be more robust in the face of molecular heterogeneity and would represent more promising therapeutic targets. A significant proportion of the highly penetrant RB1 SL effects involved proteins closely associated with RB1 function, suggesting that this might be a defining characteristic. These included nuclear pore complex components associated with the MAD2 spindle checkpoint protein, the kinase and bromodomain containing transcription factor TAF1, and multiple components of the SCFSKP Cullin F box containing complex. Small-molecule inhibition of SCFSKP elicited an increase in p27Kip levels, providing a mechanistic rationale for RB1 SL. Transcript expression of SKP2, a SCFSKP component, was elevated in RB1-defective TNBCs, suggesting that in these tumours, SKP2 activity might buffer the effects of RB1 dysfunction.
Collections
Subject
Cell Line, Tumor
Humans
Ubiquitin-Protein Ligases
Calcium-Binding Proteins
S-Phase Kinase-Associated Proteins
TATA-Binding Protein Associated Factors
Transcription Factor TFIID
Transcription, Genetic
Gene Expression Regulation, Neoplastic
Female
Histone Acetyltransferases
Retinoblastoma Binding Proteins
Mad2 Proteins
Triple Negative Breast Neoplasms
Research team
Gene Function
Language
eng
Date accepted
2018-05-21
License start date
2018-10
Citation
Oncogene, 2018, 37 (43), pp. 5701 - 5718
Publisher
NATURE PUBLISHING GROUP
Except where otherwise noted, this item's license is described
as
https://creativecommons.org/licenses/by/4.0
Related items
Showing items related by title, author, creator and subject.
-
Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint.
Bigot, N; Day, M; Baldock, RA; Watts, FZ; Oliver, AW; et al. (ELIFE SCIENCES PUBLICATIONS LTD, 2019-05-28)Coordination of the cellular response to DNA damage is organised by multi-domain 'scaffold' proteins, including 53BP1 and TOPBP1, which recognise post-translational modifications such as phosphorylation, methylation and ... -
Structural Basis for Auto-Inhibition of the NDR1 Kinase Domain by an Atypically Long Activation Segment.
Xiong, S; Lorenzen, K; Couzens, AL; Templeton, CM; Rajendran, D; et al. (CELL PRESS, 2018-08-07)The human NDR family kinases control diverse aspects of cell growth, and are regulated through phosphorylation and association with scaffolds such as MOB1. Here, we report the crystal structure of the human NDR1 kinase ... -
Multiparametric Analysis of Cell Shape Demonstrates that β-PIX Directly Couples YAP Activation to Extracellular Matrix Adhesion.
Sero, JE; Bakal, C (CELL PRESS, 2017-01-25)Mechanical signals from the extracellular matrix (ECM) and cellular geometry regulate the nuclear translocation of transcriptional regulators such as Yes-associated protein (YAP). Elucidating how physical signals control ...