Publications Repository

Publications Repository

View Item 
  •   Home
  • ICR Divisions
  • Radiotherapy and Imaging
  • View Item
  • Home
  • ICR Divisions
  • Radiotherapy and Imaging
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer.

Thumbnail
View/Open
Published version (1.468Mb)
Publication Date
2016-10-07
ICR Author
Oelfke, Uwe
Author
Steitz, J
Naumann, P
Ulrich, S
Haefner, MF
Sterzing, F
Oelfke, U
Bangert, M
Type
Journal Article
Metadata
Show full item record
Abstract
<h4>Introduction</h4>The efficacy of radiation therapy treatments for pancreatic cancer is compromised by abdominal motion which limits the spatial accuracy for dose delivery - especially for particles. In this work we investigate the potential of worst case optimization for interfractional offline motion mitigation in carbon ion treatments of pancreatic cancer.<h4>Methods</h4>We implement a worst case optimization algorithm that explicitly models the relative biological effectiveness of carbon ions during inverse planning. We perform a comparative treatment planning study for seven pancreatic cancer patients. Treatment plans that have been generated using worst case optimization are compared against (1) conventional intensity-modulated carbon ion therapy, (2) single field uniform dose carbon ion therapy, and (3) an ideal yet impractical scenario relying on daily re-planning. The dosimetric quality and robustness of the resulting treatment plans is evaluated using reconstructions of the daily delivered dose distributions on fractional control CTs.<h4>Results</h4>Idealized daily re-planning consistently gives the best dosimetric results with regard to both target coverage and organ at risk sparing. The absolute reduction of D <sub>95</sub> within the gross tumor volume during fractional dose reconstruction is most pronounced for conventional intensity-modulated carbon ion therapy. Single field uniform dose optimization exhibits no substantial reduction for six of seven patients and values for D <sub>95</sub> for worst case optimization fall in between. The treated volume (D>95 % prescription dose) outside of the gross tumor volume is reduced by a factor of two by worst case optimization compared to conventional optimization and single field uniform dose optimization. Single field uniform dose optimization comes at an increased radiation exposure of normal tissues, e.g. ≈2 Gy (RBE) in the mean dose in the kidneys compared to conventional and worst case optimization and ≈4 Gy (RBE) in D <sub>1</sub> in the spinal cord compared to worst case optimization.<h4>Conclusion</h4>Interfractional motion substantially deteriorates dose distributions for carbon ion treatments of pancreatic cancer patients. Single field uniform dose optimization mitigates the negative influence of motion on target coverage at an increased radiation exposure of normal tissue. Worst case optimization enables an exploration of the trade-off between robust target coverage and organ at risk sparing during inverse treatment planning beyond margin concepts.
URL
https://repository.icr.ac.uk/handle/internal/175
Collections
  • Radiotherapy and Imaging
Licenseref URL
https://creativecommons.org/licenses/by/4.0
Version of record
10.1186/s13014-016-0705-8
Subject
Humans
Pancreatic Neoplasms
Ions
Carbon
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Cohort Studies
Radiometry
Relative Biological Effectiveness
Algorithms
Motion
Heavy Ion Radiotherapy
Dose Fractionation, Radiation
Research team
Radiotherapy Physics Modelling
Language
eng
Date accepted
2016-09-20
License start date
2016-10-07
Citation
Radiation oncology (London, England), 2016, 11 (1), pp. 134 - ?

Browse

All of ICR repositoryICR DivisionsIssue dateAuthorsTitlesSubjectsThis collectionIssue dateAuthorsTitlesSubjects

Statistics

Most popular itemsStatistics by countryMost popular authors
  • Login
  • Registered office: The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP
    A Charity, Not for Profit. Company Limited by Guarantee.
    Registered in England No. 534147. VAT Registration No. GB 849 0581 02.