Show simple item record

dc.contributor.authorLeongamornlert, DA
dc.contributor.authorSaunders, EJ
dc.contributor.authorWakerell, S
dc.contributor.authorWhitmore, I
dc.contributor.authorDadaev, T
dc.contributor.authorCieza-Borrella, C
dc.contributor.authorBenafif, S
dc.contributor.authorBrook, MN
dc.contributor.authorDonovan, JL
dc.contributor.authorHamdy, FC
dc.contributor.authorNeal, DE
dc.contributor.authorMuir, K
dc.contributor.authorGovindasami, K
dc.contributor.authorConti, DV
dc.contributor.authorKote-Jarai, Z
dc.contributor.authorEeles, RA
dc.date.accessioned2019-03-08T11:41:25Z
dc.date.issued2019-09-01
dc.identifier.citationEuropean urology, 2019, 76 (3), pp. 329 - 337
dc.identifier.issn0302-2838
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3144
dc.identifier.eissn1873-7560
dc.identifier.doi10.1016/j.eururo.2019.01.050
dc.description.abstractBACKGROUND: Rare germline mutations in DNA repair genes are associated with prostate cancer (PCa) predisposition and prognosis. OBJECTIVE: To quantify the frequency of germline DNA repair gene mutations in UK PCa cases and controls, in order to more comprehensively evaluate the contribution of individual genes to overall PCa risk and likelihood of aggressive disease. DESIGN, SETTING, AND PARTICIPANTS: We sequenced 167 DNA repair and eight PCa candidate genes in a UK-based cohort of 1281 young-onset PCa cases (diagnosed at ≤60yr) and 1160 selected controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Gene-level SKAT-O and gene-set adaptive combination of p values (ADA) analyses were performed separately for cases versus controls, and aggressive (Gleason score ≥8, n=201) versus nonaggressive (Gleason score ≤7, n=1048) cases. RESULTS AND LIMITATIONS: We identified 233 unique protein truncating variants (PTVs) with minor allele frequency <0.5% in controls in 97 genes. The total proportion of PTV carriers was higher in cases than in controls (15% vs 12%, odds ratio [OR]=1.29, 95% confidence interval [CI] 1.01-1.64, p=0.036). Gene-level analyses selected NBN (pSKAT-O=2.4×10-4) for overall risk and XPC (pSKAT-O=1.6×10-4) for aggressive disease, both at candidate-level significance (p<3.1×10-4 and p<3.4×10-4, respectively). Gene-set analysis identified a subset of 20 genes associated with increased PCa risk (OR=3.2, 95% CI 2.1-4.8, pADA=4.1×10-3) and four genes that increased risk of aggressive disease (OR=11.2, 95% CI 4.6-27.7, pADA=5.6×10-3), three of which overlap the predisposition gene set. CONCLUSIONS: The union of the gene-level and gene-set-level analyses identified 23 unique DNA repair genes associated with PCa predisposition or risk of aggressive disease. These findings will help facilitate the development of a PCa-specific sequencing panel with both predictive and prognostic potential. PATIENT SUMMARY: This large sequencing study assessed the rate of inherited DNA repair gene mutations between prostate cancer patients and disease-free men. A panel of 23 genes was identified, which may improve risk prediction or treatment pathways in future clinical practice.
dc.formatPrint-Electronic
dc.format.extent329 - 337
dc.languageeng
dc.language.isoeng
dc.publisherELSEVIER
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectHumans
dc.subjectProstatic Neoplasms
dc.subjectGenetic Predisposition to Disease
dc.subjectDNA, Neoplasm
dc.subjectPrognosis
dc.subjectMorbidity
dc.subjectDNA Mutational Analysis
dc.subjectDNA Repair
dc.subjectGenotype
dc.subjectGerm-Line Mutation
dc.subjectAdult
dc.subjectAged
dc.subjectMiddle Aged
dc.subjectFemale
dc.subjectMale
dc.subjectGenetic Testing
dc.subjectNeoplasm Grading
dc.subjectUnited Kingdom
dc.titleGermline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel.
dc.typeJournal Article
dcterms.dateAccepted2019-01-31
rioxxterms.versionofrecord10.1016/j.eururo.2019.01.050
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2019-09
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfEuropean urology
pubs.issue3
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Genetics and Epidemiology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Genetics and Epidemiology/Oncogenetics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Oncogenetics
pubs.organisational-group/ICR/Students
pubs.organisational-group/ICR/Students/PhD and MPhil
pubs.organisational-group/ICR/Students/PhD and MPhil/18/19 Starting Cohort
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Genetics and Epidemiology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Genetics and Epidemiology/Oncogenetics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Oncogenetics
pubs.organisational-group/ICR/Students
pubs.organisational-group/ICR/Students/PhD and MPhil
pubs.organisational-group/ICR/Students/PhD and MPhil/18/19 Starting Cohort
pubs.publication-statusPublished
pubs.volume76
pubs.embargo.termsNot known
icr.researchteamOncogenetics
dc.contributor.icrauthorSaunders, Edward
dc.contributor.icrauthorBenafif, Sarah
dc.contributor.icrauthorBrook, Mark
dc.contributor.icrauthorKote-Jarai, Zsofia
dc.contributor.icrauthorEeles, Rosalind


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0