Show simple item record

dc.contributor.authorSmith, HG
dc.contributor.authorMansfield, D
dc.contributor.authorRoulstone, V
dc.contributor.authorKyula-Currie, JN
dc.contributor.authorMcLaughlin, M
dc.contributor.authorPatel, RR
dc.contributor.authorBergerhoff, KF
dc.contributor.authorPaget, JT
dc.contributor.authorDillon, MT
dc.contributor.authorKhan, A
dc.contributor.authorMelcher, A
dc.contributor.authorThway, K
dc.contributor.authorHarrington, KJ
dc.contributor.authorHayes, AJ
dc.date.accessioned2019-03-26T11:04:28Z
dc.date.issued2019-06-01
dc.identifier.citationClinical cancer research : an official journal of the American Association for Cancer Research, 2019, 25 (11), pp. 3443 - 3454
dc.identifier.issn1078-0432
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3160
dc.identifier.eissn1557-3265
dc.identifier.doi10.1158/1078-0432.ccr-18-3767
dc.description.abstractPURPOSE: The prevention and treatment of metastatic sarcoma are areas of significant unmet need. Immune checkpoint inhibitor monotherapy has shown little activity in sarcoma and there is great interest in identifying novel treatment combinations that may augment responses. In vitro and in vivo, we investigated the potential for an oncolytic vaccinia virus (GLV-1h68) delivered using isolated limb perfusion (ILP) to promote antitumor immune responses and augment response to PD-1 blockade in sarcoma.Experimental Design: In an established animal model of extremity sarcoma, we evaluated the potential of locoregional delivery of a vaccinia virus (GLV-1h68) alongside biochemotherapy (melphalan/TNFα) in ILP. Complementary in vitro assays for markers of immunogenic cell death were performed in sarcoma cell lines. RESULTS: PD-1 monotherapy had minimal efficacy in vivo, mimicking the clinical scenario. Pretreatment with GLV-1h68 delivered by ILP (viral ILP) significantly improved responses. Furthermore, when performed prior to surgery and radiotherapy, viral ILP and PD-1 blockade prevented both local and distant relapse, curing a previously treatment-refractory model. Enhanced therapy was associated with marked modulation of the tumor microenvironment, with an increase in the number and penetrance of intratumoral CD8+ T cells and expansion and activation of dendritic cells. GLV-1h68 was capable of inducing markers of immunogenic cell death in human sarcoma cell lines. CONCLUSIONS: Viral ILP augments the response to PD-1 blockade, transforming this locoregional therapy into a potentially effective systemic treatment for sarcoma and warrants translational evaluation.
dc.formatPrint-Electronic
dc.format.extent3443 - 3454
dc.languageeng
dc.language.isoeng
dc.publisherAMER ASSOC CANCER RESEARCH
dc.rights.urihttps://www.rioxx.net/licenses/under-embargo-all-rights-reserved
dc.subjectT-Lymphocyte Subsets
dc.subjectLymphocytes, Tumor-Infiltrating
dc.subjectCell Line, Tumor
dc.subjectAnimals
dc.subjectHumans
dc.subjectMice
dc.subjectVaccinia virus
dc.subjectSarcoma
dc.subjectDisease Models, Animal
dc.subjectTreatment Outcome
dc.subjectImmunohistochemistry
dc.subjectXenograft Model Antitumor Assays
dc.subjectImmunophenotyping
dc.subjectOncolytic Virotherapy
dc.subjectOncolytic Viruses
dc.subjectProgrammed Cell Death 1 Receptor
dc.subjectGenetic Therapy
dc.subjectAntineoplastic Agents, Immunological
dc.titlePD-1 Blockade Following Isolated Limb Perfusion with Vaccinia Virus Prevents Local and Distant Relapse of Soft-tissue Sarcoma.
dc.typeJournal Article
dcterms.dateAccepted2019-03-08
rioxxterms.versionofrecord10.1158/1078-0432.ccr-18-3767
rioxxterms.licenseref.urihttps://www.rioxx.net/licenses/under-embargo-all-rights-reserved
rioxxterms.licenseref.startdate2019-06
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfClinical cancer research : an official journal of the American Association for Cancer Research
pubs.issue11
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology/Targeted Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Sarcoma and Melanoma Surgery
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Targeted Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Translational Immunotherapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Translational Immunotherapy/Translational Immunotherapy (TL)
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology/Targeted Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Sarcoma and Melanoma Surgery
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Targeted Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Translational Immunotherapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Translational Immunotherapy/Translational Immunotherapy (TL)
pubs.publication-statusPublished
pubs.volume25
pubs.embargo.termsNot known
icr.researchteamSarcoma and Melanoma Surgery
icr.researchteamTargeted Therapy
icr.researchteamTranslational Immunotherapy
dc.contributor.icrauthorMansfield, David
dc.contributor.icrauthorRoulstone, Victoria
dc.contributor.icrauthorMcLaughlin, Martin
dc.contributor.icrauthorDillon, Magnus
dc.contributor.icrauthorMelcher, Alan
dc.contributor.icrauthorHarrington, Kevin


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record