Show simple item record

dc.contributor.authorJennings, VA
dc.contributor.authorScott, GB
dc.contributor.authorRose, AMS
dc.contributor.authorScott, KJ
dc.contributor.authorMigneco, G
dc.contributor.authorKeller, B
dc.contributor.authorReilly, K
dc.contributor.authorDonnelly, O
dc.contributor.authorPeach, H
dc.contributor.authorDewar, D
dc.contributor.authorHarrington, KJ
dc.contributor.authorPandha, H
dc.contributor.authorSamson, A
dc.contributor.authorVile, RG
dc.contributor.authorMelcher, AA
dc.contributor.authorErrington-Mais, F
dc.date.accessioned2019-06-19T15:14:28Z
dc.date.issued2019-06-05
dc.identifier.citationMolecular therapy : the journal of the American Society of Gene Therapy, 2019, 27 (6), pp. 1139 - 1152
dc.identifier.issn1525-0016
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3261
dc.identifier.eissn1525-0024
dc.identifier.doi10.1016/j.ymthe.2019.04.008
dc.description.abstractA clinical oncolytic herpes simplex virus (HSV) encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), talimogene laherparepvec, causes regression of injected and non-injected melanoma lesions in patients and is now licensed for clinical use in advanced melanoma. To date, limited data are available regarding the mechanisms of human anti-tumor immune priming, an improved understanding of which could inform the development of future combination strategies with improved efficacy. This study addressed direct oncolysis and innate and adaptive human immune-mediated effects of a closely related HSV encoding GM-CSF (HSVGM-CSF) alone and in combination with histone deacetylase inhibition. We found that HSVGM-CSF supported activation of anti-melanoma immunity via monocyte-mediated type I interferon production, which activates NK cells, and viral maturation of immature dendritic cells (iDCs) into potent antigen-presenting cells for cytotoxic T lymphocyte (CTL) priming. Addition of the histone deacetylase inhibitor valproic acid (VPA) to HSVGM-CSF treatment of tumor cells increased viral replication, viral GM-CSF production, and oncolysis and augmented the development of anti-tumor immunity. Mechanistically, VPA increased expression of activating ligands for NK cell recognition and induced expression of tumor-associated antigens, supporting innate NK cell killing and CTL priming. These data support the clinical combination of talimogene laherparepvec with histone deacetylase inhibition to enhance oncolysis and anti-tumor immunity.
dc.formatPrint-Electronic
dc.format.extent1139 - 1152
dc.languageeng
dc.language.isoeng
dc.publisherCELL PRESS
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectDendritic Cells
dc.subjectKiller Cells, Natural
dc.subjectT-Lymphocytes, Cytotoxic
dc.subjectHumans
dc.subjectSimplexvirus
dc.subjectHerpesvirus 1, Human
dc.subjectMelanoma
dc.subjectSkin Neoplasms
dc.subjectValproic Acid
dc.subjectGranulocyte-Macrophage Colony-Stimulating Factor
dc.subjectInterferon Type I
dc.subjectBiological Products
dc.subjectAntigens, Neoplasm
dc.subjectDrug Therapy, Combination
dc.subjectCell Survival
dc.subjectGenetic Vectors
dc.subjectOncolytic Virotherapy
dc.subjectOncolytic Viruses
dc.subjectHistone Deacetylase Inhibitors
dc.subjectMCF-7 Cells
dc.subjectAntineoplastic Agents, Immunological
dc.titlePotentiating Oncolytic Virus-Induced Immune-Mediated Tumor Cell Killing Using Histone Deacetylase Inhibition.
dc.typeJournal Article
dcterms.dateAccepted2019-04-08
rioxxterms.versionofrecord10.1016/j.ymthe.2019.04.008
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2019-06
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfMolecular therapy : the journal of the American Society of Gene Therapy
pubs.issue6
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology/Targeted Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Targeted Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Translational Immunotherapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Translational Immunotherapy/Translational Immunotherapy (TL)
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology/Targeted Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Targeted Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Translational Immunotherapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Translational Immunotherapy/Translational Immunotherapy (TL)
pubs.publication-statusPublished
pubs.volume27
pubs.embargo.termsNot known
icr.researchteamTargeted Therapy
icr.researchteamTranslational Immunotherapy
dc.contributor.icrauthorHarrington, Kevin
dc.contributor.icrauthorMelcher, Alan


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0