In Vivo Modeling of Chemoresistant Neuroblastoma Provides New Insights into Chemorefractory Disease and Metastasis.

View/ Open
Date
2019-10-15ICR Author
Author
Yogev, O
Almeida, GS
Barker, KT
George, SL
Kwok, C
Campbell, J
Zarowiecki, M
Kleftogiannis, D
Smith, LM
Hallsworth, A
Berry, P
Möcklinghoff, T
Webber, HT
Danielson, LS
Buttery, B
Calton, EA
da Costa, BM
Poon, E
Jamin, Y
Lise, S
Veal, GJ
Sebire, N
Robinson, SP
Anderson, J
Chesler, L
Type
Journal Article
Metadata
Show full item recordAbstract
Neuroblastoma is a pediatric cancer that is frequently metastatic and resistant to conventional treatment. In part, a lack of natively metastatic, chemoresistant in vivo models has limited our insight into the development of aggressive disease. The Th-MYCN genetically engineered mouse model develops rapidly progressive chemosensitive neuroblastoma and lacks clinically relevant metastases. To study tumor progression in a context more reflective of clinical therapy, we delivered multicycle treatment with cyclophosphamide to Th-MYCN mice, individualizing therapy using MRI, to generate the Th-MYCN CPM32 model. These mice developed chemoresistance and spontaneous bone marrow metastases. Tumors exhibited an altered immune microenvironment with increased stroma and tumor-associated fibroblasts. Analysis of copy number aberrations revealed genomic changes characteristic of human MYCN-amplified neuroblastoma, specifically copy number gains at mouse chromosome 11, syntenic with gains on human chromosome 17q. RNA sequencing revealed enriched expression of genes associated with 17q gain and upregulation of genes associated with high-risk neuroblastoma, such as the cell-cycle regulator cyclin B1-interacting protein 1 (Ccnb1ip1) and thymidine kinase (TK1). The antiapoptotic, prometastatic JAK-STAT3 pathway was activated in chemoresistant tumors, and treatment with the JAK1/JAK2 inhibitor CYT387 reduced progression of chemoresistant tumors and increased survival. Our results highlight that under treatment conditions that mimic chemotherapy in human patients, Th-MYCN mice develop genomic, microenvironmental, and clinical features reminiscent of human chemorefractory disease. The Th-MYCN CPM32 model therefore is a useful tool to dissect in detail mechanisms that drive metastasis and chemoresistance, and highlights dysregulation of signaling pathways such as JAK-STAT3 that could be targeted to improve treatment of aggressive disease. SIGNIFICANCE: An in vivo mouse model of high-risk treatment-resistant neuroblastoma exhibits changes in the tumor microenvironment, widespread metastases, and sensitivity to JAK1/2 inhibition.
Subject
Animals
Mice, Transgenic
Humans
Mice
Neuroblastoma
Neoplasm Metastasis
Disease Models, Animal
Disease Progression
Benzamides
Cyclophosphamide
Pyrimidines
Neoplasm Proteins
Antineoplastic Agents
Magnetic Resonance Imaging
Tumor Burden
Signal Transduction
Gene Expression Regulation, Neoplastic
Synteny
Drug Resistance, Neoplasm
Gene Dosage
Genes, myc
Child
Janus Kinases
Tumor Microenvironment
N-Myc Proto-Oncogene Protein
Research team
Paediatric Solid Tumour Biology and Therapeutics
Pre-Clinical MRI
Language
eng
Date accepted
2019-08-06
License start date
2019-10
Citation
Cancer research, 2019, 79 (20), pp. 5382 - 5393
Publisher
AMER ASSOC CANCER RESEARCH