Show simple item record

dc.contributor.authorHansel, CSen_US
dc.contributor.authorCrowder, SWen_US
dc.contributor.authorCooper, Sen_US
dc.contributor.authorGopal, Sen_US
dc.contributor.authorJoão Pardelha da Cruz, Men_US
dc.contributor.authorde Oliveira Martins, Len_US
dc.contributor.authorKeller, Den_US
dc.contributor.authorRothery, Sen_US
dc.contributor.authorBecce, Men_US
dc.contributor.authorCass, AEGen_US
dc.contributor.authorBakal, Cen_US
dc.contributor.authorChiappini, Cen_US
dc.contributor.authorStevens, MMen_US
dc.date.accessioned2020-06-09T12:02:11Z
dc.date.issued2019-03-04en_US
dc.identifier.citationACS nano, 2019, 13 (3), pp. 2913 - 2926en_US
dc.identifier.issn1936-0851en_US
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3712
dc.identifier.eissn1936-086Xen_US
dc.identifier.doi10.1021/acsnano.8b06998en_US
dc.description.abstractBiomaterial substrates can be engineered to present topographical signals to cells which, through interactions between the material and active components of the cell membrane, regulate key cellular processes and guide cell fate decisions. However, targeting mechanoresponsive elements that reside within the intracellular domain is a concept that has only recently emerged. Here, we show that mesoporous silicon nanoneedle arrays interact simultaneously with the cell membrane, cytoskeleton, and nucleus of primary human cells, generating distinct responses at each of these cellular compartments. Specifically, nanoneedles inhibit focal adhesion maturation at the membrane, reduce tension in the cytoskeleton, and lead to remodeling of the nuclear envelope at sites of impingement. The combined changes in actin cytoskeleton assembly, expression and segregation of the nuclear lamina, and localization of Yes-associated protein (YAP) correlate differently from what is canonically observed upon stimulation at the cell membrane, revealing that biophysical cues directed to the intracellular space can generate heretofore unobserved mechanosensory responses. These findings highlight the ability of nanoneedles to study and direct the phenotype of large cell populations simultaneously, through biophysical interactions with multiple mechanoresponsive components.en_US
dc.formatPrint-Electronicen_US
dc.format.extent2913 - 2926en_US
dc.languageengen_US
dc.language.isoengen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.subjectCells, Cultureden_US
dc.subjectHumansen_US
dc.subjectSiliconen_US
dc.subjectNeedlesen_US
dc.subjectCell Adhesionen_US
dc.subjectMechanotransduction, Cellularen_US
dc.subjectParticle Sizeen_US
dc.subjectSurface Propertiesen_US
dc.subjectPorosityen_US
dc.subjectNanostructuresen_US
dc.subjectHuman Umbilical Vein Endothelial Cellsen_US
dc.titleNanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery.en_US
dc.typeJournal Article
rioxxterms.versionofrecord10.1021/acsnano.8b06998en_US
rioxxterms.licenseref.startdate2019-03-04en_US
rioxxterms.typeJournal Article/Reviewen_US
dc.relation.isPartOfACS nanoen_US
pubs.issue3en_US
pubs.notesNot knownen_US
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Biology/Dynamical Cell Systems
pubs.publication-statusPublisheden_US
pubs.volume13en_US
pubs.embargo.termsNot knownen_US
icr.researchteamDynamical Cell Systemsen_US
dc.contributor.icrauthorBakal, Christopheren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/