Show simple item record

dc.contributor.authorKunowska, N
dc.contributor.authorRotival, M
dc.contributor.authorYu, L
dc.contributor.authorChoudhary, J
dc.contributor.authorDillon, N
dc.date.accessioned2020-07-28T13:50:29Z
dc.date.issued2015-02
dc.identifier.citationNucleic acids research, 2015, 43 (3), pp. 1418 - 1432
dc.identifier.issn0305-1048
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3883
dc.identifier.eissn1362-4962
dc.identifier.doi10.1093/nar/gku1350
dc.description.abstractThe large number of chemical modifications that are found on the histone proteins of eukaryotic cells form multiple complex combinations, which can act as recognition signals for reader proteins. We have used peptide capture in conjunction with super-SILAC quantification to carry out an unbiased high-throughput analysis of the composition of protein complexes that bind to histone H3K9/S10 and H3K27/S28 methyl-phospho modifications. The accurate quantification allowed us to perform Weighted correlation network analysis (WGCNA) to obtain a systems-level view of the histone H3 histone tail interactome. The analysis reveals the underlying modularity of the histone reader network with members of nuclear complexes exhibiting very similar binding signatures, which suggests that many proteins bind to histones as part of pre-organized complexes. Our results identify a novel complex that binds to the double H3K9me3/S10ph modification, which includes Atrx, Daxx and members of the FACT complex. The super-SILAC approach allows comparison of binding to multiple peptides with different combinations of modifications and the resolution of the WGCNA analysis is enhanced by maximizing the number of combinations that are compared. This makes it a useful approach for assessing the effects of changes in histone modification combinations on the composition and function of bound complexes.
dc.formatPrint-Electronic
dc.format.extent1418 - 1432
dc.languageeng
dc.language.isoeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectCell Line, Tumor
dc.subjectAnimals
dc.subjectMice
dc.subjectProteins
dc.subjectHistones
dc.subjectCombinatorial Chemistry Techniques
dc.subjectMass Spectrometry
dc.titleIdentification of protein complexes that bind to histone H3 combinatorial modifications using super-SILAC and weighted correlation network analysis.
dc.typeJournal Article
rioxxterms.versionofrecord10.1093/nar/gku1350
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2015-02
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfNucleic acids research
pubs.issue3
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR
pubs.publication-statusPublished
pubs.volume43
pubs.embargo.termsNot known
dc.contributor.icrauthorChoudhary, Jyotien


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0