The regulatory isoform rPGRP-LC induces immune resolution via endosomal degradation of receptors.
View/ Open
Date
2016-08-22ICR Author
Author
Neyen, C
Runchel, C
Schüpfer, F
Meier, P
Lemaitre, B
Type
Journal Article
Metadata
Show full item recordAbstract
The innate immune system needs to distinguish between harmful and innocuous stimuli to adapt its activation to the level of threat. How Drosophila mounts differential immune responses to dead and live Gram-negative bacteria using the single peptidoglycan receptor PGRP-LC is unknown. Here we describe rPGRP-LC, an alternative splice variant of PGRP-LC that selectively dampens immune response activation in response to dead bacteria. rPGRP-LC-deficient flies cannot resolve immune activation after Gram-negative infection and die prematurely. The alternative exon in the encoding gene, here called rPGRP-LC, encodes an adaptor module that targets rPGRP-LC to membrane microdomains and interacts with the negative regulator Pirk and the ubiquitin ligase DIAP2. We find that rPGRP-LC-mediated resolution of an efficient immune response requires degradation of activating and regulatory receptors via endosomal ESCRT sorting. We propose that rPGRP-LC selectively responds to peptidoglycans from dead bacteria to tailor the immune response to the level of threat.
Collections
Subject
Cell Line
Membrane Microdomains
Endosomes
Animals
Animals, Genetically Modified
Pectobacterium carotovorum
Gram-Negative Bacterial Infections
Protein Sorting Signals
Carrier Proteins
Drosophila Proteins
Immunity
Protein Binding
Structure-Activity Relationship
Exons
Inhibitor of Apoptosis Proteins
Gene Knockout Techniques
Immunomodulation
Endosomal Sorting Complexes Required for Transport
Proteolysis
RNA Isoforms
Research team
Cell Death and Immunity
Language
eng
Date accepted
2016-07-18
License start date
2016-10
Citation
Nature immunology, 2016, 17 (10), pp. 1150 - 1158
Publisher
NATURE PUBLISHING GROUP
Except where otherwise noted, this item's license is described
as
https://creativecommons.org/licenses/by/4.0
Related items
Showing items related by title, author, creator and subject.
-
Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint.
Bigot, N; Day, M; Baldock, RA; Watts, FZ; Oliver, AW; et al. (ELIFE SCIENCES PUBLICATIONS LTD, 2019-05-28)Coordination of the cellular response to DNA damage is organised by multi-domain 'scaffold' proteins, including 53BP1 and TOPBP1, which recognise post-translational modifications such as phosphorylation, methylation and ... -
Structural Basis for Auto-Inhibition of the NDR1 Kinase Domain by an Atypically Long Activation Segment.
Xiong, S; Lorenzen, K; Couzens, AL; Templeton, CM; Rajendran, D; et al. (CELL PRESS, 2018-08-07)The human NDR family kinases control diverse aspects of cell growth, and are regulated through phosphorylation and association with scaffolds such as MOB1. Here, we report the crystal structure of the human NDR1 kinase ... -
Multiparametric Analysis of Cell Shape Demonstrates that β-PIX Directly Couples YAP Activation to Extracellular Matrix Adhesion.
Sero, JE; Bakal, C (CELL PRESS, 2017-01-25)Mechanical signals from the extracellular matrix (ECM) and cellular geometry regulate the nuclear translocation of transcriptional regulators such as Yes-associated protein (YAP). Elucidating how physical signals control ...