Show simple item record

dc.contributor.authorBradshaw, M
dc.contributor.authorSquire, JM
dc.contributor.authorMorris, E
dc.contributor.authorAtkinson, G
dc.contributor.authorRichardson, R
dc.contributor.authorLees, J
dc.contributor.authorCaputo, M
dc.contributor.authorBigotti, GM
dc.contributor.authorPaul, DM
dc.coverage.spatialNetherlands
dc.date.accessioned2023-10-20T13:36:42Z
dc.date.available2023-10-20T13:36:42Z
dc.date.issued2023-09-01
dc.identifier10.1007/s10974-023-09653-5
dc.identifier.citationJournal of Muscle Research and Cell Motility, 2023, 44 (3), pp. 179 - 192en_US
dc.identifier.issn0142-4319
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/6030
dc.identifier.eissn1573-2657
dc.identifier.eissn1573-2657
dc.identifier.doi10.1007/s10974-023-09653-5
dc.identifier.doi10.1007/s10974-023-09653-5
dc.description.abstractActin, tropomyosin and troponin, the proteins that comprise the contractile apparatus of the cardiac thin filament, are highly conserved across species. We have used cryo-EM to study the three-dimensional structure of the zebrafish cardiac thin and actin filaments. With 70% of human genes having an obvious zebrafish orthologue, and conservation of 85% of disease-causing genes, zebrafish are a good animal model for the study of human disease. Our structure of the zebrafish thin filament reveals the molecular interactions between the constituent proteins, showing that the fundamental organisation of the complex is the same as that reported in the human reconstituted thin filament. A reconstruction of zebrafish cardiac F-actin demonstrates no deviations from human cardiac actin over an extended length of 14 actin subunits. Modelling zebrafish homology models into our maps enabled us to compare, in detail, the similarity with human models. The structural similarities of troponin-T in particular, a region known to contain a hypertrophic cardiomyopathy 'hotspot', confirm the suitability of zebrafish to study these disease-causing mutations.
dc.formatPrint-Electronic
dc.format.extent179 - 192
dc.languageeng
dc.language.isoengen_US
dc.publisherSPRINGERen_US
dc.relation.ispartofJournal of Muscle Research and Cell Motility
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.subjectActin
dc.subjectCryo-EM
dc.subjectThin filament
dc.subjectTropomyosin
dc.subjectTroponin
dc.subjectZebrafish
dc.subjectAnimals
dc.subjectHumans
dc.subjectZebrafish
dc.subjectActins
dc.subjectCryoelectron Microscopy
dc.subjectActin Cytoskeleton
dc.subjectTropomyosin
dc.subjectCardiomyopathy, Hypertrophic
dc.subjectCalcium
dc.titleZebrafish as a model for cardiac disease; Cryo-EM structure of native cardiac thin filaments from Danio Rerio.en_US
dc.typeJournal Article
dcterms.dateAccepted2023-07-04
dc.date.updated2023-10-20T13:34:50Z
rioxxterms.versionVoRen_US
rioxxterms.versionofrecord10.1007/s10974-023-09653-5en_US
rioxxterms.licenseref.startdate2023-09-01
rioxxterms.typeJournal Article/Reviewen_US
pubs.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/37480427
pubs.issue3
pubs.organisational-groupICR
pubs.organisational-groupICR/Primary Group
pubs.organisational-groupICR/Primary Group/ICR Divisions
pubs.organisational-groupICR/Primary Group/ICR Divisions/Closed research teams
pubs.organisational-groupICR/Primary Group/ICR Divisions/Closed research teams/Structural Electron Microscopy
pubs.publication-statusPublished
pubs.publisher-urlhttp://dx.doi.org/10.1007/s10974-023-09653-5
pubs.volume44
icr.researchteamStruct Electron Microscen_US
dc.contributor.icrauthorMorris, Edward
icr.provenanceDeposited by Mr Arek Surman on 2023-10-20. Deposit type is initial. No. of files: 1. Files: Zebrafish as a model for cardiac disease; Cryo-EM structure of native cardiac thin filaments from Danio Rerio.pdf


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/